|
Совершенствование эффективности переработки леса в России и за рубежомусиления прочностных свойств. Вопросы снижения токсичности ДСтП на основе КФС являются предметом особого внимания исследователей. Рассматриваются пути снижения токсичности ДСтП строительного назначения за счет специальных отвердителей - кислых фосфорнокислых солей металлов (Аl, Cr, Zn, В). В частности, использование алюмохромофосфата в количестве 2% обеспечивает снижение свободного формальдегида в ДСтП в 2 раза. Гигиенические характеристики ДСтП рассматриваются с точки зрения здоровья населения и среды обитания. В КНР разработан способ снижения токсичности ДСтП с использованием натриевой соли кислого лигнина в качестве поглотителя СН^О. Добавку смешивают с эмульгированным парафином и вводят в стружечную массу в количестве 6%. Этим достигают снижения эмиссии формальдегида с 28,5 до 15.6 мг/100 г плиты. Токсичность КФС снижают в процессе синтеза модифицированием неорганическими электролитами. На структуру и свойства смолы оказывает влияние природа ионов. Лучшие результаты получены в присутствии NaСI и КСl. В процессе выдержки смол увеличивается радиус глобулярных частиц и, следовательно, вязкость, незначительно растет время желатинизации. Предметом многих патентов и заявок являются режимы синтеза КФС и добавка различных модификаторов при синтезе: лигносульфонатов, отходов производства ПЭПА, ацетатов меламина, алюмосиликатов, протеинов и крахмала. Среди модификаторов готовой КФС перспективно использование кремнезоля, который переходит в гель в режиме отверждения КФС и при этом сорбирует СН2О. Взаимопроникающие полимерные сетки повышают прочность клеевых швов и получаемых ДСтП [Леонович, 1999]. Водостойкость ДСтП улучшают использованием меламино- или фенолофор-мальдегидных смол. Предлагаются новые решения по синтезу меламинокар-бамидоформальдегидных смол с кислым сульфитом щелочных металлов, обеспечивающие содержание свободного СН2О менее 0,1% , а также по минимизации в рецептуре меламина как более дорогого компонента. Для синтеза фенолоформальдегидной смолы (ФФС) используют отходы производства фенола кумольным методом с ГМТА, смесь фенола и n-третбутилфенола, дифенилолпропан. Синтезированный олигомер модифицируют тунговым маслом или карбамидом; полученное связующее используют исключительно для внутренних слоев ДСтП. Сравнительно редко в качестве связующего используются водные дисперсии: акрилобутадиенстирольные, полиуретановые, поливинилацетатные, винилэфирполимеризатов алкилкарбоксильных кислот с виниловым спиртом. Однако благодаря нетоксичности это направление можно считать перспективным, также как использование связующих на основе изоцианатов. На 11-м международном симпозиуме по клеям в Швейцарии (май 1997 г.) сообщалось о новом поколении полиуретановых дисперсий, разработанных в США. Был представлен форполимер с NСО-группами для сшивки ФФС. При использовании такого совмещенного связующего в ДСтП получен сенсационный результат: его расход был снижен до 3% против 12% в случае использования ФФС. Развивается направление моделирования процессов разрушения структуры ДСтП. Предпринимаются попытки заимствовать из бурно развивающейся механики композиционных материалов подходы к оценке напряженно-деформационного состояния, чтобы в конечном счете подобрать состав макроструктуры композиционного материала с требуемыми свойствами. Предлагается армировать ДСтП волокнами различной природы, измельченным ПВХ, ПММА в виде гранул, а также изменять параметры связующих веществ. Так, для мебели общественного назначения (например, школьных парт, лабораторных столов) требуются "антивандальные" ДСтП - ударопрочные, с высокой динамической вязкостью, хорошо удерживающие шурупы. Достигается это использованием бифункциональных олигомеров (например, диизоцианатов) определенной молекулярной массы и гибкости, чтобы в готовой плите в молекулах сохранялась некоторая сегментальная подвижность в режиме вынужденной эластичности для диссипации механической энергии [Древесные, 1999]. Вспенивающиеся полиизоцианаты при расходе от 10% и выше используются для получения сэндвич-панелей с центральным слоем из ДСтП для замены традиционного конструкционного материала - многослойной фанеры. В качестве наружных слоев используют древесные волокна с повышенным содержанием полиизоцианатов. При расходе 30% плотность панелей может быть снижена до 350 кг/м3, тогда панели одновременно служат тепло- и звукоизоляционным материалом. На Западе уделяется возрастающее внимание вторичной переработке материалов. Технологии утилизации называют "рециклами". Активно действует Европейская Ассоциация конвертирования пластмасс (ЕиРС). Предложено изготовлять ДСтП из железнодорожных шпал 20-летней эксплуатации, из использованной деревянной тары. Сообщается о переработке старых ДСтП и ДВП; плиты измельчают, обрабатывают дереворазрушающими грибами, горячей щелочью и вновь прессуют с добавкой связующего. Очевидно, что в производстве ДСтП использование вторичного сырья должно занять соответствующее место в сырьевой базе предприятий, расположенных в зоне крупных городов [Леонович, 1999]. 3.4. БИОЛОГИЧЕСКИ АКТИВНЫЕ СВОЙСТВА СОЕДИНЕНИЙ И ВОЗможНЫЕ НАПРАВЛЕНИЯ ХИМИЧЕСКОЙ ПЕРЕРАБОТКИ ЭКСТРАКТОВ ДРЕВЕСНОЙ ЗЕЛЕНИ СОСНА - ОДНО ИЗ ДРЕВНЕЙШИХ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ. ПО ФИТОНЦИДНОЙ АКТИВНОСТИ ОНА ПРЕВОСХОДИТ МНОГИЕ ВИДЫ ДРЕВЕСНЫХ ПОРОД. В СОСНОВЫХ ЛЕСАХ ВОЗДУХ ПРАКТИчЕСКИ СТЕРИЛЕН (200-300 БАКТЕРИАЛЬНЫХ КЛЕТОК НА 1 М). ДРЕВЕСНАя ЗЕЛЕНЬ ОчЕНЬ БОГАТА ВИТАМИНАМИ КАК В КОЛИчЕСТВЕННОМ, ТАК И В КАчЕСТВЕННОМ ОТНОШЕНИИ. ВЫСОКОЕ СОДЕРЖАНИЕ ВИТАМИНА С И КАРОТИНА, В чАСТНОСТИ, И ОБУСЛОВИЛИ ПЕРВЫЕ РАЗРАБОТКИ ПО ИСПОЛЬЗОВАНИЮ ЭТОГО СЫРЬя. ОДНАКО НАЛИчИЕМ ЭТИХ СОЕДИНЕНИЙ ДАЛЕКО НЕ ИСчЕРПЫВАЮТСя ВОЗМОЖНОСТИ ДРЕВЕСНОЙ ЗЕЛЕНИ КАК СЫРЬя ДЛя ПОЛУчЕНИя БИОЛОГИчЕСКИ АКТИВНЫХ ПРЕПАРАТОВ. Моно- и сесквитерпеноиды, входящие в состав как эфирных масел, так и нейтральные соединений древесной зелени сосны, наряду с фитонцидной активностью проявляют высокую токсичность для стволовых вредителей - ксилофагов и репеллентную активность против двукрылых насекомых [Ягодин, 1981; Левин, 1981; Репях, 1988]. Исследования по применению эфирных масел в медицине показали, что препарат, содержащий 10 % эфирного масла сосны в единице лекарственной формы, может быть использован в качестве стимулятора заживления гнойных ран. Большой интерес представляют вещества, входящие в состав нейтральных соединений древесной зелени сосны. Однако если (- ситостерин, содержащий в древесной зелени как в свободной форме, так и в виде сложных эфиров с высшими жирными кислотами, является уже традиционным для лесохимии продуктом, то остальные соединения до сих пор в России промышленно не выделяются. Изоабиенол, являясь спиртом лабданового типа строения, относится к ценным исходным соединениям для синтеза душистых производных серой амбры - продукта жизнедеятельности кашалотов, представляющего собой один из наиболее ценных видов сырья для парфюмерии. За последние 10-15 лет интерес к душистым соединениям значительно вырос, о чем свидетельствуют многочисленные публикации. Объясняется это постоянно растущим спросом на них во всем мире и непрерывным сокращением численности кашалотов [Васильев, 1991]. При окислении изоабиенола удалось получить амбреинолид. При обработке серной кислотой амбреинолид перегруппировывается в кислоту, циклизующуюся далее в карбонильное соединение феналановой структуры с сильным , амбровым запахом. Амбреинолид является важным веществом для синтеза и других ценных душистых соединений. В небольшом количестве он содержится в табаке, но богатых им природных источников нет. Разработано несколько синтезов рацемического амбреинолида. Все они многостадийны, а исходные вещества труднодоступны. Поэтому решение задачи синтеза этого соединения из доступного сырья является важным достижением в создании процессов промышленного синтеза душистых соединений [Васильев, 1991]. Полипренолы идентифицированы в листьях растений, а также бактериях, тканях животных организмов, грибах. Отмечено, что содержание полипренолов более высокое (в 10-50 раз) в хвойных растениях, чем в лиственных. При этом в хвойных растениях полипренолы содержат большее количество (от 10 до 20) изопреновых звеньев в цепи молекулы, чем в лиственных (от 6 до 12). Концентрируясь в мембранах клеток, полипренилфосфаты осуществляют перенос углеводов от соответствующих нуклеотидсахаров с последующей их полимеризацией. Цепи полипренолов входят в состав молекул таких биологически активных соединений, как витамин К, токоферолы, некоторые коферменты. Исследователи относят полипренолы к новому классу низко молекулярных биорегуляторов, играющих исключительно важную роль в продуцировании живыми организмами - от микроорганизмов до млекопитающих - углеводосодержащих биополимеров ряда полисахаридов, гликопротеинов, пентидогликонов и других [Васильев, 1991]. В организме человека эти соединения сконцентрированы в поджелудочной железе, мозге, сердце, почках, печени, селезенке и других тканях. Полипренолы представляют интерес как лекарственные вещества, в частности производные полипренолов могут найти применение в качестве средств, снижающих кровяное давление, противоожоговых средств, а также заживляющих язвы желудка и двенадцатиперстной кишки. Отмечается также высокая эффективность применения этих веществ в качестве кормовых добавок. Основные исследования по изучению полипренолов проводились в США и Японии. В этих странах полипренолы получают из свиной печени и свиной поджелудочной железы, а также хвои различных растений методом промышленной колоночной хроматографии. Сложность получения таких препаратов и высокая эффективность их применения обусловливают высокую цену на эти продукты. Фосфолипиды, представленные в основном глицерофосфатидами, и их концентраты применяются в качестве эмульгирующих веществ в биологически активных эмульсиях. Они улучшают качество и ценность продуктов питания. Небольшие добавки этих соединений в корм животных способствуют повышению продуктивности скота и птицы. Поэтому использование древесной зелени в качестве дешевого и доступного сырья для подобного производства является актуальной задачей. 3.4.1. ПЕРЕРАБОТКА ДРЕВЕСНОЙ ЗЕЛЕНИ СОСНЫ И ПЕРСПЕКТИВЫ ЕЕ РАЗВИТИЯ Использование древесной зелени в настоящее время направлено главным образом на применение ее в качестве кормовой добавки в рационы сельскохозяйственных животных. Питательность древесной зелени сосны составляет 0,28 кормовой единицы в 1 кг, т.е. равна по питательной ценности пшеничной или ржаной соломе. Хвоя содержит целый ряд ценных биологически активных веществ и является витаминным кормом, а также служит источником фитонцидов. Однако наличие в ней дубильных, смолистых веществ, а также горечей, придающих ей специфический вкус и свойства, ограничивает ее использование в значительных количествах в нативном виде. Кроме того, древесная зелень является продуктом ско-ропортящимся. Срок ее хранения после заготовки не должен превышать в летнее время 5 сут., а в зимнее - 20 сут. [Васильев, 1991]. Для использования полезных свойств этого ценнейшего растительного сырья при одновременном нивелировании отрицательных сторон применяются различные методы переработки древесной зелени. Их можно подразделить на механические и химические. Механическая переработка древесной зелени Для сохранения на более длительное время биологически активных веществ хвои на практике проводят скоростную сушку и затем высушенную древесную зелень измельчают в муку. Хвойная витаминная мука потребляется животными лучше, чем свежая хвоя. Это происходит потому, что при сушке из нее удаляется часть эфирных масел и других летучих веществ, а часть дубильных веществ переходит в малорастворимую форму. Цехи по выработке витаминной муки на предприятиях России в основном работают рентабельно. Выработка товарной продукции на одного рабочего составляет около 5 тыс.р. в год. Эти показатели могут быть значительно улучшены за счет механизации ручного труда на заготовке сырья и комплексного его использования. В России работает свыше 200 цехов и несколько передвижных установок по выработке хвойной витаминной муки [Васильев, 1991]. Простота технологии и неограниченный сбыт продукции способствовали быстрому росту этого производства. Однако в последнее время реализация продукции затрудняется из-за высокой (150-280 р./т) цены на витаминную муку. Технология производства витаминной муки имеет и ряд трудностей, связанных не только со сложностью сбора древесной зелени, но и с зависимостью состава сырья от различных неконтролируемых факторов, а также его неоднородностью. Необходимо также отметить, что использование витаминной муки как компонента кормов сельскохозяйственных животных ограничено наличием дубильных и смолистых веществ, гликозидов и алкалоидов. Поэтому становится очевидной необходимость облагораживать древесную зелень или извлекать из нее биологически активные вещества с использованием проэкстрагированного сырья, в качестве витаминной муки или компостов, а также кормовых добавок, Обогащенных белком за счет выращивания на ней дополнительной биомассы. 3.4.2. ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕщЕСТВ ИЗ ДРЕВЕСНОЙ ЗЕЛЕНИ Технология экстракционной переработки древесной зелени заключается в извлечении из измельченного сырья различными растворителями биологически активных веществ, их концентрирование и использование в качестве конечного продукта или как сырья для выделения соединений с ценными свойствами. Все существующие технологические схемы можно подразделить на непрерывные или периодические с использованием в качестве экстрагента воды, водяного пара, полярных или неполярных растворителей. Переработка древесной зелени по способу батарейной противоточной экстракции горячей водой после предварительной отгонки эфирного масла острым паром относится к старейшим производствам такого рода. Уже в 1931 г. на Тих-винском лесохимическом заводе вошел в строй цех по переработке еловой древесной зелени с получением хвойного лечебного экстракта и эфирного масла [Ягодин, 1980]. В настоящее время этот цех перерабатывает ежегодно около 3,5 тыс.тсырья и производит экстракт хвойный натуральный (ТУ-81-05-97--70), экстракт хвойно- соляный в брикетах (ТУ-81-05-98--70), а также тяжелое эфирное масло (фС 42-659-73). Тяжелое эфирное масло применяется для приготовления препарата "Пинабин", являющегося эффективным средством лечения почечно- и желчекаменной болезни и калькулезного холецистита. Наряду с батарейным методом экстракции предложена усовершенствованная технологическая схема переработки древесной зелени с получением эфирного масла и хвойного натурального экстракта на установках непрерывного действия НДТ-ЗМ и УНП [Ягодин, 1980; Репях, 1988]. В 1975 г. такая технология внедрена в Цюрупинском лесхоззаге Херсонской области Украины [Продниекс, 1988]. Кроме получения хвойных экстрактов в настоящее время существует несколько способов получения соков из хвои. Выход клеточного сока зависит от способа и глубины обработки сырья и составляет от 10 до 30 %. Для увеличения выхода сока древесную зелень подвергают многократной пропарке или ферментации. Это дает возможность разрушить защитную оболочку хвои и значительно повысить выход сока, состав которого мало отличается от состава натурального хвойного экстракта. Все получаемые таким образом экстракты представляют собой галеновые препараты со слабо изученным, составом и используются только для приготовления хвойных ванн в качестве лечебного средства при заболеваниях центральной и периферической нервной системы, сердечно-сосудистых и ревматических заболеваниях. Из органических растворителей в настоящее время нашли промышленное применение только бензин БР-1 и БР-2, а также трихлорэтилен. Начало использования жирорастворимых веществ приходится на 1949 г., когда был предложен способ переработки древесной зелени экстракцией бензином. Получаемый продукт, который после омыления растворяется в воде, был назван хлорофилло-каротиновой пастой (ГОСТ 21802-84). Производство хлорофилло-каротиновой пасты впервые было организовано в Лисинском учебно-опытном лесхозе в 1950 г., а затем модернизировано [Ягодин, 1980; Левин, 1981; Репях, 1988]. В настоящее время такие производства перерабатывают как только сосновую древесную зелень, так и сосновую древесную зелень совместно с еловой. Поэтому, исходя из состава используемого сырья, цехи по переработке древесной зелени в зависимости от технологического варианта подразделяются на два вида. К первому относятся цехи, перерабатывающие только древесную зелень сосны, с получением хвойной хлорофилло-каротиновой пасты, хвойного воска (ОСТ-56-65-82) и эфирных масел. Ко второму - цехи, перерабатывающие древесную зелень сосны и ели с получением, кроме упомянутых продуктов, хлорофиллина натрия (ОСТ 56-33-85), бальзамической пасты (ОСТ 56-58-83), провитаминного концентрата (ОСТ-56-32-85), а также фракций эфирных масел (рис. 6). В 1980 г. внедрена технология получения хвойного эфирного масла путем вакуумной фракционной дистилляции масла-сырца с применением ротационного пленочного испарителя ИР-10 [Ягодин, 1988]. Согласно технологической схеме бензиновый экстракт древесной зелени, освобожденный от восков, подвергают обработке 30 %-ным водным раствором щелочи. При этом происходит омыление сложноэфирньк групп в молекуле хлорофилла с выделением металла, фитола, а также нейтрализация свободных жирных, смоляных и хлорофиллиновых кислот. Натриевые соли кислот и некоторые производные хлорофилла, образовавшиеся в результате воздействия на экстракт щелочи, растворяются в воде. Нейтральные же вещества остаются в бензиновом растворе. После отгонки растворителя из нейтральных веществ получают провитаминный концентрат и эфирные масла. Водорастворимые вещества обрабатывают 15-20 %-ным раствором серной кислоты, в результате чего выделяются хлорофиллин-сырец, а также жирные и смоляные кислоты. Для получения смоляных и жирных кислот применяют метод экстрагирования бензином при 60-65 С0 с последующей отгонкой растворителя. Полученный продукт нейтрализуют 40 %-ной щелочью с добавлением воды до 40 % влажности. Он представляет собой бальзамическую пасту. Водная суспензия хлорофиллина-сырца промывается водой до нейтральной реакции в промывных водах. Затем производится сушка продукта. Полученные хлорофиллиновые кислоты нейтрализуются карбонатом натрия (содой) в 20%-ном водном растворе этанола при температуре 75 С и соотношении растворитель: хлорофиллин натрия:сода равном 10:1: :0,5 в течение 15-20 мин [Репях, 1988]. При получении спиртового раствора хлорофиллина натрия спирт частично отгоняется до получения нужной концентрации продукта. При получении же водного раствора спирт отгоняется полностью и концентрат хлорофиллина натрия растворяется в воде. Полученные растворы поступают в фасовочное отделение и [pic] Рис. 6. Принципиальная схема переработки древесной зелени по способу бензиновой экстракции разливаются в стеклянную тару. Таким образом, учитывая использование обессмоленной древесной зелени, в настоящее время можно говорить о создании безотходной технологии переработки этого сырья с получением целого ряда биологически активных продуктов. Однако все они представляют собой сложные, полностью не изученные смеси, что ограничивает их применение и, прежде всего, в фармакологии. Выход хлорофилло-каротиновой пасты по описанной технологии переработки древесной зелени сосны из 1 т сырья при использовании для ее подготовки усовершенствованного измельчителя кормов "Волгарь-5" составляет 60-70 кг и 120-150 т тяжелого эфирного масла [Ягодин, 1988]. В среднем извлекается приблизительно 50-60 % смолистых веществ. Количество хлорофилловых пигментов в бензиновом экстракте составляет 20-30 %, а каротиноидов до 50 % от содержания их в исходном сырье. При дальнейшей переработке экстрактов древесной зелени сосны и ели получают до 5 кг провитаминного концентрата, 5-5,5 кг бальзамической пасты, до 2 кг хвойного воска, а также 200-230 г хлорофиллина натрия. В НПО "Силава" (Латвия) на основании данных о работе цехов по переработке древесной зелени на базе типового оборудования с использованием нестандартных экстракторов разработан проект лесобиохимического цеха с получением хлорофилло-каротиновой пасты и тяжелого эфирного масла [Продниекс, 1988]. Ниже приведены технико-экономические показатели цеха. Технико-экономические показатели цеха Годовой выпуск товарной продукции, тыс.р. 123,95 Годовая потребность, т: в сырье .....……………………………............ 600 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |