|
Исследование электрохимического поведения ионов самария в хлоридных и хлоридно-фторидных расплавахиттриевой подгруппах РЗМ). Подобное деление ряда РЗМ получило название "тетрадного эффекта" [ 27, 28 ], обусловленного дестабилизацией ионов Nd3+, Gd3+, Ho3+. Аномально высокие значения электропроводности трихлоридов Sm, Eu, Yb объясняются устойчивостью двухвалентных ионов данных РЗМ как в твердом, так и в жидком состояниях, обладающих меньшей способностью к комплексообразованию. Для всех исследованных составов системы LiCl - KCl - SmCl3 температурные зависимости удельной электропроводности ( ), плотности (() и поверхностного натяжения (() описываются уравнениями вида [ 29 ]: x = a + bT ( 1 ) Значения коэффициентов уравнений находятся методом наименьших квадратов; они приведены в таблице N6. Из экспериментальных данных по плотности и удельной электропроводности рассчитаны значения молярной электропроводности ((). На рис. 2.5 показана изотерма молярной электропроводности расплава LiCl - KCl - SmCl3 при 1050К. Как видим, при добавлении 10-15% (мол.) SmCl3 молярная электропроводность смеси резко падает. При содержании в расплаве 15-65% (мол.) SmCl3 молярная электропроводность системы изменяется незначительно. Дальнейшее увеличение концентрации трихлорида самария приводит к более резкому снижению молярной электропроводности. Подобная зависимость молярной электропроводности от состава наблюдается в системах LiCl - KCl - PrCl3 [ 30 ] и LiCl - KCl - NdCl3 [ 31 ]. Таблица N6 SmCl3, % мол. а b(103 ((xТемператур. интервал, К 1 2 3 4 5 (10-2, Ом-1(м-1 2,34 -1,465 4,135 0,029 770-1070 8,45 -1,468 3,756 0,007 770-1070 17,71 -1,163 3,098 0,011 770-1070 33,43 -1,470 2,933 0,009 860-1070 46,27 -1,723 3,018 0,012 840-1070 65.96 -1,802 2,858 0,015 820- 1070 77,13 -1,879 2,856 0,011 870-1070 87,44 -1,842 2,658 0,009 910-1070 100 -1.768 2,449 0,004 960-1070 ((10-3, кг/м3 2,34 2,136 -0,540 0,009 770-!070 8,45 2,409 -0,638 0,012 770-1070 17,71 2,635 -0,648 0,009 770-1070 33,43 2,886 -0,636 0,009 860- 1070 46,27 3,204 -0,714 0,011 840-1070 65,96 3,608 -0,762 0,008 820-1070 77,13 3,828 -0,800 0,010 870-1070 87,44 3,977 -0,783 0,012 910-1070 1 2 3 4 5 ((103, Н/м 2,34 134,8 -24,6 0,3 770-1070 8,45 128,9 -28,5 0,6 770-1070 17,71 127,5 -37,3 0,5 770-1070 33,43 154,3 -63,2 0,4 860-1070 46,27 148,0 -56,7 0,6 840-1070 65,96 136.9 -44,7 0,8 820-1070 77,13 147.0 -53,2 0,7 870-1070 87,44 172,9 -77,0 0,6 910-1070 100 218,5 -119,6 0,5 960-1070 На рис. 2.6 показана изотерма поверхностного натяжения системы LiCl - KCl - SmCl3, построенная по экспериментальным данным для 1050К (см. табл. N6). Штриховой линией изображена изотерма, рассчитанная по уравнению Жуховицкого - Гуггенгейма для идеального раствора. Как видим, изотерма поверхностного натяжения имеет экстремальный вид с максимумом в области малых концентраций SmCl3, что можно объяснить протеканием в расплаве следуюших процессов. При добавлении в эвтектику LiCl - KCl хлорида самария происходит вытеснение ионов Li+ из первой координационной сферы во вторую с образованием комплексных ионов типа SmCl63-. Это ведет к накоплению в расплаве относительно "свободных" катионов Li+ и увеличению поверхностного натяжения расплава по сравнению с рассчитанным для идеального раствора. При повышении концентрации SmCl3 в смеси уменьшается число "свободных" катионов Li+ , растет число комплексных ионов на основе катиона Sm3+ , поверхностное натяжение при этом резко уменьшается. В дальнейшем, по мере роста концентрации в расплаве трихлорида самария происходит перестройка комплексных ионов. Образуются ионы SmCl52-, Sm2Cl7-, что приводит к отрицательным отклонениям поверхностного натяжения по сравнению с рассчитанным по уравнению для идеального раствора. В последнее время были проведены исследования взаимодействия в системах РЗМ - солевой расплав; также исследовались термодинамические свойства систем РЗЭ с другими металлами. Для примера приведем системы Ln - Co и Ln - Ni. В качестве характеристики взаимодействия металлов с Ni и Co [ 22 ] использовали изменение массы образца - подложки (Ni или Co), которая в исследованных условиях описывается уравнением вида: P = K(n ( 2 ) где Р - изменение массы образца; ( - продолжительность процесса; n - показатель степени; К - константа скорости процесса: E K = K0 exp ( ( ) ( 3 ) RT Т - температура процесса; К0 - коэффициент; R - универсальная газовая постоянная; Е - энергия активации процесса. Анализ уравнения ( 2 ) показал, что для большинства исследованных систем Ме - Ln (Mе - Co, Ni; Ln - Y, La, Ce, Pr) значения показателя степени n близки к 0,5. Параболическая зависимоть изменения массы образцов от времени свидетельствует о том, что лимитирующей стадией процесса является диффузия в твердой фазе. Константа скорости К, при одинаковых температурах, в 3-5 раз выше для систем Co - Ln. Наименьшее значение К наблюдается при образовании сплавов лантана. Энергия активации процесса Е максимальна для системы Co - Pr (95(5) и минимальна для системы Ni - La (54(2)кДж/моль. Исследование взаимодействия РЗЭ и их цинковых сплавов с расплавом LiCl - KCl показало, что скорость коррозии РЗЭ из цинковых сплавов значительно ниже скорости коррозии металлов и при 973К для большинства РЗЭ составляет (3-5)(10-3, для Sm - 12(10-3 и для Yb - 38(10-3 г/см2(ч. В литературе есть сведения о термодинамических свойствах соединений самария, богатых легкоплавким металлом (ЛПМ) [ 32 ]. Однако они получены измерениями ЭДС гальванического элемента Sm - Inн.р. | KCl - LiCl + SmCl2 | Sm - ЛПМн.р. ( 4 ) в котором для пересчета использованы сплавы Sm c Zn c известными термодинамическими свойствами [ 33 ]. По результатам прямых измерений потенциалов насыщенных растворов Sm - In и Sm - Bi относительно металлического самария для реакций Sm(тв.) + 2In(ж.) ( SmIn2(тв.) ( 5 ) Sm(тв.) + 2Bi(ж.) ( SmBi2(тв.) ( 6 ) рассчитаны [ 34 ] температурные зависимости парциальных значений энергий Гиббса самария в соединениях SmIn2 и SmBi2. _ SmIn2 (GSm = -258,3 + 130,2(10-3T ( 0,2 (кДж/моль) ( 7 ) _ SmBi2 (GSm = -247,8 + 71,9(10-3T ( 0,2 (кДж/моль) ( 8 ) С учетом зависимостей ( 7 ), ( 8 ) и результатов измерений ЭДС гальванического элемента ( 4 ), получены новые значения термодинамических характеристик соединений самария с ЛПМ. рис. 2.4. Электропроводность трихлоридов РЗМ. рис. 2.5. Изотерма молярной электропроводности расплава LiCl - KCl - SmCl3 при 1050К. рис. 2.6. Изотерма поверхностного натяжения системы LiCl - KCl - SmCl3 (Т=1050К). 2.4 Электрохимическое поведение ионов РЗМ в галогенидных расплавах. Первые попытки электролитического получения РЗМ из их расплавленных соединений были сделаны в конце 19в. Были получены Ce и La в довольно чистом состоянии и больших количествах. Трудности получения тяжелых РЗМ связаны, главным образом, с высокой летучестью расплавов их соединений [ 35 ]. Дальнейшие исследования связаны, в основном, с усовершенствованием технологии получения чистых РЗМ. Для получения металлов группы лантана, имеющих сравнительно низкую температуру плавления (La, Ce, Pr, Nd) используется процесс электролиза в расплаве хлоридов [ 36 ]. Металлы с более высокой температурой плавления (Sm, Gd, Dy, Y) получают из оксидов методом электролиза в расплаве фторидов. Фториды Sm, Eu, Tm и Yb восстанавливаются не полностью, поэтому эти металлы получают восстановлением оксидов с помощью La или мишметалла, имеющих более низкое давление паров. Предложено получать РЗМ [ 37 ], преимущественно Nd или сплавы Nd - La, Nd - Ce, Nd - Pr, а также сплавы РЗМ с переходными металлами, методом электролиза солевой ванны, состоящей из 10-70% (предпочтительно 15-45%) хлорида РЗМ, хлоридов и фторидов ((15%) щелочных и щелочно-земельных металлов (в частности, лития), при температуре 650-1100(С (предпочтительно 700-900(С), напряжении 4-10 В и Da = 100-250 A/дм2 и Dk = 70-700 А/дм2. Степень извлечения металла достигает 80%. Также был проведен ряд исследований по изучению механизма электровосстановления ионов РЗМ из расплавов солей. Показано [ 38 ], что электровосстановление ионов La3+ до металла происходит в одну трехэлектронную стадию. Электродный процесс контролируется скоростью переноса заряда и осложнен последующей быстрой необратимой химической реакцией. Длительная выдержка металла в расплаве NaCl - KCl - LaCl3 не приводит к образованию ионов лантана низшей валентности. Изучено влияние условий электролиза (ik, t, состав расплава) на выход по току церия при его электролитическом производстве электролизом хлоридного расплава на основе эвтектической смеси LiCl - KCl (42 мол.% KСl) или NaCl - KCl (50 мол.% каждого) [ 39 ], При увеличении температуры расплава от 850 до 1000(С выход по току церия сначала возрастает, а затем уменьшается; максимальный выход по току наблюдался при температуре 900(С. При увеличении содержания CeCl3 в раплаве от 10 до 50% выход по току церия возрастает от 0 до (61,8% (расплав NaCl - KCl, ik = 9 А/см2, 900(С). Оптимальный диапазон концентраций CeCl3 составляет 30-50%. При повышении п*************************************************************************** **************************************************************************** **************************************************************************** **************************************************************************** ****************************************************** **************************************************************************** **************************************************************************** **ку процесса осаждения зависит от i и соcтава электролита, уменьшаясь с ростом плотности тока (0,22-0,86 А/см2) от 92 до 89 и от 81 до 32 % при использовании MgZn и Mg3Cd2 - катодов соответственно. Более резкий спад выхода по току в случае Mg - Cd катода связывается с замедленностью растворения неодима в данном металлическом расплаве. Анодным растворением жидких сплавов Zn - Ln установлено [ 22 ], что Y, La, Nd, Er, Dy окисляются с образованием трехзарядных, Sm и Yb - двухзарядных ионов, а при окислении церия, наряду с ионами Ce3+ образуются ионы Ce2+, доля которых с ростом температуры увеличивается. Учитывая способность лантаноидов к комплексообразованию можно предположить, что коррозия и анодное растворение Y, La, Nd, Er, Dy сопровождается образованием в расплаве ионов LnCl63-, Sm и Yb - LnCl53-, a Ce - смесью CeCl63- и CeCl53- . Анализ литературы показывает, что электрохимические свойства расплавленных систем, содержащих ионы ионы самария, практически не исследованы. В частности, исследованию электрохимического поведения трехвалентного самария в хлоридных расплавах посвящена всего одна работа [ 41 ]. Несколько лучше обстоит дело с исследованием электрохимических свойств иона Sm2+ в расплавах солей. Измерение равновесных потенциалов Sm в расплавленных хлоридах щелочных металлов при высоких температурах практически невозможно из-за интенсивного растворения металла. Специальными исследованиями показано, что необратимый процесс вытеснения щелочного металла из эквимолярного расплава KCl - NaCl самарием протекает с высокой скоростью (например, при 1010К она составляет 3,0 г/cм2(ч). Поэтому для определения термодинамических характеристик эквимолярного расплава KCl - NaCl, содержащего самарий, измеряли равновесные потенциалы его сплавов с алюминием, активность самария в которых сильно понижена [ 32 ]. Анализ концентрационных зависимостей равновесных потенциалов сплавов при постоянной температуре (с учетом [ 32 ] ) позволил сделать вывод, что в исследуемом интервале температур в равновесии со сплавом находятся ионы Sm(II). По экспериментальным данным рассчитаны условные стандартные потенциалы самария [ 42 ]. RT [Sm2+] E*Sm2+/Sm = EpSm(Al) - (( ln (((( ( 9 ) 2F aSm(Al) где EрSm2+/Sm(Al) - равновесный потенциал сплава Sm c Al, аSm(Al) - активность Sm в сплаве. После обработки данных методом наименьших квадратов получена температурная зависимость условного стандартного потенциала самария: E*Sm2+/Sm = (-4,412 + 9,70(10-4T)( 0,001, В ( 10 ) Сведения о растворимости самария в жидком индии ограничены [ 32, 43 ]. Это связано с чрезвычайно высокой активностью металлического самария и большой электроотрицательностью ионов самария в расплаве солей. Металлический самарий способен восстанавливать щелочные металлы в расплаве. Длительная выдержка самарийсодержащих сплавов может приводить к значительной его коррозии. Поэтому для точного определения величины растворимости и других характеристик самарийсодержащих систем электрохимическими методами необходимо применять сплавы самария с другими металлами, в которых активность самария понижена. Определение растворимости самария в жидком индии при кратковременных выдержках сплавов в электролите сводилось к измерениям ЭДС гальванического элемента концентрационного типа [ 44 ]: Sm - In(н.р.) |KCl - NaCl + 3% мас. SmCl2| Sm - In(разб. р-р) ( 11 ) Температурная зависимость растворимости самария в жидком индии в координатах lg Xнас. - 1000/Т представляет собой прямую линию. Растворимость самария в жидком индии при 1000 и 1100К составляет 4,67(10-4 и 1,02(10-3 ат.%, по результатам работ выполненных методом ЭДС [ 32 ], фильтрацией [ 43 ] - 1,16(10-3, 1,77(10-3 и 2,95(10-3; 3,87(10-3 ат.% соответственно. В 60-70-х гг. исследовательский центр PENO Горного бюро США выполнил ряд работ по электролитическому получению РЗМ, иттрия и их сплавов электролизом их оксидов, растворенных в расплавленных смесях фторид РЗМ - LiF (иногда с добавкой BaF2) [ 45 ]. Растворимость оксидов РЗМ в таких электролитах составляет 2-4%. Электролиз для получения Nd, Pr, Gd, Y вели в графитовых тиглях со стержневыми графитовыми анодами и катодами из вольфрама. Электролиз при t ( 1120(C сопровождался заметным взаимодействием РЗМ с электролитом и графитом. С целью снижения рабочей температуры электролиз вели с получением относительно легкоплавких бинарных сплавов РЗМ, используя катоды из Fe, Co, Mn. Этим способом получали сплавы Fe - Y, Fe - Dy, Co - Sm, Co - Y, Co - Nd, Co - Dy, Mn - Y, Mn - Gd. 2.5 Постановка задачи. Анализ литературных данных показывает, что электрохимическое поведение иона Sm3+ в галогенидных расплавах практически не изучено; в теоретическом аспекте данной проблемы остаются невыясненными механизм и характер электродных процессов восстановления иона самария расплавах, а также кинетические закономерности протекания этих процессов. Самарий в галогенидных расплавах существует в виде ионов Sm3+ и Sm2+ , что в значительной степени может повлиять на его электрохимическое поведение. Вместе с тем известно, что переход от хлоридных к хлоридно - фторидным комплексам стабилизирует высшую степень окисления самария (Sm3+ -ион), что также может повлиять на механизм электровосстановления ионов Sm3+. Поэтому задачей нашей работы является выяснение механизма и характера процесса электровосстановления ионов Sm3+ в хлоридных и хлоридно - фторидных расплавах. Глава II Методы исследования и методика проведения эксперимента. 3.1 Выбор электролитических методов исследования электродных процессов в расплавленных средах и применения аппаратуры. В последние несколько лет наблюдается развитие теории и практики электрохимических методов исследования. Согласно общей классификации электрохимических методов анализа, предложенной ИЮПАК [ 46 ], методы, в которых изучаются электродные реакции, подразделяются на два подкласса: 1. Методы, в которых возбуждаемый электрический сигнал постоянен или равен нулю, как например, потенциометрия; 2. Методы, в которых возбуждаемый сигнал меняется во времени. Методы второго подкласса в свою очередь можно разделить на две группы. В методах первой группы используются большие переменные сигналы, причем "большие" означает более удвоенного значения 2,3RT/F. В эту группу входят все методы, в которых происходит изменение потенциала или тока, например, вольтамперометрия и ее варианты, полярография и большинство ее вариантов, а также некоторые хронопотенциометрические методы. Во вторую группу входят все методы, в которых используются малые сигналы, где "малые" означает сигналы с амплитудами, меньшими, чем 2,3RT/F: это переменно-токовая и квадратно-волновая полярография. Методом исследования электровосстановления ионов РЗМ нами выбрана вольтамперометрия (ВА). Она включает группу электрохимических методов, в которых контролируемый параметр - потенциал индикаторного электрода - меняется во времени, а измеряемой величиной является ток, протекающий через индикаторный электрод. Под вольтамперометрией понимается большая группа методов изучения кинетики электродных процессов, в которых во времени изменяется потенциал исследуемого электрода (обычно по линейному закону) и измеряется ток, протекающий через электрохимическую ячейку. Частью вольтамперометрического метода является полярография. В настоящее время под полярографией понимаются вольтамперометрические исследования с применением жидких капельных электродов (в основном - ртутных). Применение полярографии к расплавленным средам затруднено по ряду причин, главным образом, высокой летучестью ртути. Полярографические кривые трудно воспроизводятся и на них недостаточно четко выражены области предельных токов. Величины потенциалов разложения не совпадают, как правило, с ЭДС соответствующих обратимых гальванических цепей. Это объясняется отсутствием надежных индикаторных электродов и электродов сравнения, высокой температурой процессов, обусловливающей ускорение деполяризации, неудовлетворительной конструкцией электрохимической ячейки с разделенными приэлектродными пространствами. Принято различать классическую вольтамперометрию (КВА) (полярографию), в которой потенциал изменяется медленно (1-4 мВ/с) и наблюдаемые явления могут быть качественно описаны на основании равновесных или квазиравновесных зависимостей. При малых скоростях поляризации электродной системы запись вольтамперных кривых осуществляется обычно с помощью электронных потенциометров. Другой разновидностью вольтамперометрического метода является вольтамперометрия с быстрой разверткой потенциала или осциллографическая вольтамперометрия (ОВА) (осциллографическая полярография). В этом случае скорость поляризации рабочего электрода составляет от 10 мВ/с до 100 В/c. При таких высоких скоростях поляризации запись вольтамперных кривых производится с помощью осциллографа или дисплея. Классическая кривая имеет предельный ток (Iпр.), а осциллографическая кривая - четко выраженный максимум (пик). В качестве основных, экспериментально определяемых параметров в методе классической вольтамперометрии служат предельный ток Iпр. и потенциал полупика (1/2 (при I = I пр./2), а в методе осциллографической вольтамперометрии - ток пика Ip и потенциал полупика (p/2 (при Ip/2). Теория классической и осциллографической вольтамперометрии применительно к простым и сложным электрохимическим процессам рассмотрена в работах Д.Плэшбэка и З.Галюса [ 47, 48 ]. Методы с быстрой разверткой потенциала, в которых направление изменения потенциала меняется на обратное, называются циклическими. Циклическая вольтамперометрия (ЦВА) представляет собой вольтамперометрический метод, в котором фиксируется изменение во времени тока, протекающего через изучаемую систему при наложении на нее напряжения, изменяющегося во времени по закону треугольника. Теоретические основы ЦВА разработаны Николсоном и Шейном [ 49 ], а хороший обзор теоретических положений дал Адамсон [ 50 ]. Независимыми переменными в этом методе являются скорость и пределы изменения потенциала индикаторного электрода. Предельное значение потенциала, при котором направление его развертки меняется на обратное, называется потенциалом возврата, переключения или обрыва. Рассмотренные выше вольтамперометрические методы являются одними из наиболее нормативных. Но при изучении электрохимического поведения иона Sm3+ нами чаще будут использоваться КВА и ОВА. Рассмотрим основы теории этих методов [ 51 ]. Классическая вольтамперометрия. Рассмотрим случай обратимой электродной реакции: Охn+ + ne ( Red ( 1 ) которая протекает на плоском электроде в условиях избытка индифферентного электролита в исследуемом расплаве. Лимитирующей стадией процесса является диффузия разряжающихся ионов Oxn+ к поверхности индикаторного (рабочего) электрода. В этих условиях массоперенос осуществляется путем полубесконечной линейной диффузии и у поверхности электрода возникает изменяющийся во времени градиент концентрации ионов Oxn+. Решая дифференциальное уравнение Фика относительно концентраций Cox(x, t) и СRed(x, t) при x = 0 и подставляя их значения в уравнение Нернста, получаем зависимость, которая описывает классическую полярограмму. При этом различают случай, когда продукт реакции ( 1 ) растворим в расплаве или материале электрода, то есть имеет место сплавообразование (случай а), или продукт Red нерастворим и накапливается на поверхности инликаторного |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |