бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Ихтиология

Ихтиология

Ихтиология

Анисимова И.М., Лавровский В.В.

Из-во "Высшая школа"

1983 г.

Часть I. Общая ихтиология. Место рыб в системе животных

· Рыбы (и круглоротые) в системе животных занимают самое низкое место среди позвоночных. Они относятся к типу хордовых Chordata (благодаря наличию хорды-эластичного тяжа, являющегося у них начальным осевым скелетом, у большинства рыб замещающегося позвоночником), подтипу позвоночных или черепных Vertebrata или Craniata, надклассу рыбы Pisces. В этом надклассе среди современных рыб выделяются два класса - хрящевые рыбы Chondrichthyes и костные рыбы Osteichthyes. К подтипу позвоночных относится и класс круглоротых Cyclostomata - миноги и миксины; менее совершенные, чем настоящие рыбы, они не имеют ещё челюстей и парных плавников и называются рыбообразными. Положение основных групп рыб в системе животных показано на рис. 1.

·

Рис. 1. Положение основных групп рыб в системе животных (по Наумову, Карташеву, 1979, с сокращениями)

· Рыбы - древняя группа, насчитывающая сотни миллионов лет. Наиболее ранние ископаемые остатки позвоночных принадлежат круглоротым и панцирным рыбам, найденным в Европе и Америке в силурийских отложениях (палеозойская эра). Примитивные рыбообразные животные по строению были близки к круглоротым, они появились и обитали в пресных водах.

· Позднее возникли акулы и скаты. Их появление относят к концу палеозойской эры (карбонский и пермский периоды) и к началу мезозойской эры (триасовый и юрский периоды), но затем эта группа начала угасать.

· К палеозойской эре приурочивают исследователи и появление относительно сложноорганизованных рыб, характеризующихся более или менее окостеневшим скелетом. В среднем девоне древние лучёперые, кистепёрые и двоякодышащие рыбы уже многочисленны в пресных водах, а в мезозойской эре начинается переход лучепёрых в моря.

· Костистые рыбы Teleostei, обнаруженные в мезозойской эре (триасовый и меловой периоды), господствовали как в пресных, так и в морских водоемах.

· В настоящее время насчитывают более 20 тыс. видов рыб, живущих в морских и пресных водах. В водах СССР встречается около 1500 видов, из них около 300 видов пресноводные рыбы, остальные - морские.

· Биологические группы рыб. В соответствии с зоной обитания в водоемах различных типов выделены следующие биологические группы рыб: морские рыбы - живут только в соленой воде морей и океанов (пеламида, тунец, скумбрия, анчоус и др., всего около 11,6 тыс. видов); пресноводные рыбы - обитают только в пресных водах (карась, щука и др. , всего около 8,3 тыс. видов); солоновато водные рыбы - живут в солоноватой воде опресненных участков морей, предустьевых пространств (бычки, речная камбала и др. ); проходные рыбы - в определённые периоды жизни меняют морскую среду на пресноводную или наоборот; при этом морские заходят для нереста в реки, до их верховьев, а пресноводные выходят из рек нереститься в море (осетр, белуга, лососевые рода Oncorhynchus и др. , всего около 130 видов); полупроходные рыбы - это обитатели опресненных пространств морей, поднимающиеся на нерест невысоко в реки (сазан, лещ, вобла, сом, судак).

· По приуроченности к характерным экологическим зонам водоёма - пелагиали (толща воды), бентали (придонная зона), литорали (прибрежная зона) - различают рыб пелагических, бентических, литоральных.

· В пределах этих больших групп выделены более узкие экологические группы в связи с особенностями питания, размножения и т. д.

Некоторые абиотические факторы и их влияние на рыб

· Известно, что свыше 71 % поверхности земного шара (~360 млн. км2 из510) занимают моря, океаны и внутренние водоемы. Максимальная известная глубина океана - примерно 11 000 м, а около 50-60% площади океанов приходится на глубины 3000м. Высота некоторых горных озер превышает 6000 м над уровнем моря. Рыбы распространены повсюду. Они обитают от полярных вод до тропиков, от поверхностных слоев до океанических глубин, в пресной и морской воде, у берегов и в открытых пространствах, у дна и в толще воды, в высокогорных и пещерных водоемах, в горячих источниках и при отрицательной температуре, в условиях заморных водоемов.

· Очевидно, в процессе эволюции у них выработались как общие, так и весьма специфические приспособления, позволяющие всем им, с одной стороны, жить в водной среде, а с другой - осваивать столь различные водоёмы. Эти приспособления затрагивают все системы организма. К общим, наиболее характерным признакам рыб относятся жабры, дающие возможность использовать для дыхания растворенный в воде кислород; форма тела и плавники, обеспечивающие передвижение в воде; плавательный пузырь, выполняющий гидростатическую функцию; метамерное строение двигательной мускулатуры, благодаря чему в движении участвует почти все тело; кожа, в которой образуется чешуя, а также слизь, играющие важную роль в защите тела от внешних воздействий и во многих других процессах; боковая линия - важный сейсмосенсорный орган; многочисленные приспособления, обеспечивающие сохранение потомства при наружном осеменении икры и эмбриональном развитии вне материнского организма.

· Приспособлением к жизни в водной среде (в условиях пониженной температуры, низкого содержания кислорода) явился и низкий уровень обмена. По способности приспосабливаться к окружающей среде рыбы превосходят всех других позвоночных.

· Рыбы - первичноводные животные, всю жизнь проводящие в воде, поэтому свойства воды оказывают сильнейшее влияние на жизнедеятельность и в конечном счете на состав ихтиофауны водоема.

· Плотность воды и движение рыб. Высокая плотность и малая вязкость воды (определяемые количеством растворенных в ней солей и температурой) играют большую роль в жизни рыб. С этими факторами связаны, с одной стороны, сопротивление воды движущемуся телу, а следовательно, и скорость его передвижения, а с другой давление массы воды на организм, которое, увеличиваясь с глубиной на каждые ~10м на 1,01 * 105Па, в глубинах океана превышает 1013 * 105 Па.

· Поэтому огромное значение для рыб имеют приспособления, обеспечивающие существование в толще воды, удержание тела в определённом положении и облегчение плавания.

· Эти приспособления выразились в снижении плотности тела, благодаря чему увеличивается способность держаться в толще воды без особых усилий, и в выработке разнообразных форм тела и способов движения.

· Плотность тела рыб только немного выше этих показателей воды, а у хороших пловцов - равна им. Благодаря этому плавучесть (отношение плотности тела рыбы к плотности воды) становится нулевой или нейтральной (осетр, судак, карп, голавль и другие нектонные рыбы). Таким образом, рыбы в воде относительно невесомы. У придонных и донных рыб отмечена незначительная отрицательная плавучесть (у камбал и бычков - 0,05-0,07) - это способствует удержанию их у дна.

· Выравнивание плотности тела рыбы и воды происходит у хрящевых и некоторых костистых рыб за счет накопления жира. Костистые рыбы имеют специальный гидростатический аппарат - плавательный пузырь -мешкообразный орган, наполненный газами. Изменение объёма плавательного пузыря позволяет рыбе в известных пределах регулировать плавучесть. Специальные гидростатические приспособления имеют рыбы и в эмбриональном периоде: оводнение желтка, наличие в желтке жировых капель, увеличение перивителлинового пространства в икринках и др.

· Термика водоема. Исключительно важную роль имеют свойства воды, определяющие термический режим водоема. Постепенность нагрева и охлаждения водных масс обеспечивают: очень высокая удельная теплота парообразования (2255 Дж/г); высокая скрытая теплота плавления воды (334 Дж/г), из-за которой большое количество тепла выделяется при ее замерзании и поглощается при таянии льда; более высокая, чем у суши, теплопрозрачность воды, которая способствует проникновению солнечных лучей в глубину и непосредственному нагреванию толщи воды на разных уровнях; очень высокая теплоемкость воды (4 Дж/г), т. е. способность поглощать теплоту. Низкая теплопроводность льда ведет к тому, что зимой температура воды с глубиной увеличивается и держится в придонных слоях водоема на уровне нескольких градусов, а снижение удельного веса воды при замерзании, ее способность при этом увеличиваться в объёме приводит к всплыванию льда, который образует на поверхности теплоизоляционный слой. Все это исключает промерзание водоемов, кроме совсем мелководных.

· Основную массу тепловых лучей из атмосферы поглощают верхние слои воды. Количество лучей, проникающих вглубь, постепенно убывает, поэтому температура воды на разных глубинах неодинакова (температурная стратификация). Зимой в малых водоемах наблюдается обратная стратификация - от 0°С под ледовым покровом к 4°С на глубинах.

· Рыбы относятся к пойкилотермным животным, т, е. к животным с переменной температурой тела (от слова “пойкилос” - пестрый), или, как неудачно их называют, к холоднокровным животным.

· Тепло, вырабатываемое в организме рыб в обменных процессах, не задерживается в теле, так как у них нет механизмов, регулирующих его отдачу. Вследствие этого температура их тела непостоянна, в известных пределах она следует за температурой окружающей среды. У карпа, линя, карася, находящихся в покое, температура тела соответствует температуре окружающей воды, а при плавании превышает ее на 0,2-0,3°С. Температура тела угря, у которого откладывается большое количество жира под кожей, может быть на 2,7°Свыше окружающей. У больных рыб температура тела повышается приблизительно на 2°С. Наибольшее превышение температуры тела над температурой воды 11°С зарегистрировано у тунца.

· Рыбы осваивают водоемы с самыми различными температурными режимами. В горячих источниках Калифорнии (t - 52°C) живет лукания. Угри были обнаружены при температуре 45°С; наряду с этим даллия обитает в промерзающих водоемах Крайнего Севера Азии (Чукотка) и Америки (Аляска). В нашей фауне исключительной холодостойкостью отличается карась - он способен, вмерзая зимой в лёд, оставаться живым (если только не промерзают полостные жидкости).

· Но это крайние примеры. Обычно в зависимости от пределов температуры, в которых происходит наиболее интенсивная нормальная жизнедеятельность, рыб разделяют на теплолюбивых и холодолюбивых.

· Теплолюбивые рыбы нашей фауны, такие, как сазан, карп, карась, линь, плотва, растительноядные, осетровые и др. , питаются наиболее интенсивно при температуре 17-28°С, при пониженной температуре пищевая активность ослабевает, а у ряда рыб на зиму прекращается, и они проводят зиму в малоподвижном состоянии в глубоких местах водоема; размножаются в теплое время года - весной и летом. Таким образом, обмен веществ у них наиболее эффективен при относительно высокой температуре (в определённых пределах).

· Для холодолюбивых рыб оптимальные температуры относительно низкие - 8-16°С; зимой они продолжают питаться; нерест происходит осенью и зимой (большинство лососевых - сиги, белорыбица, лосось, ручьевая форель и др.). При высоких температурах (более20°С) их активность падает, т. е. у этих рыб наиболее интенсивный обмен приспособлен к относительно низким температурам.

· Вся жизнедеятельность рыб (питание, рост, размножение и т. д. ) непосредственно определяется температурой воды, поэтому рыбы очень чувствительны к ее изменению.

· Общеизвестны скопления прудовых теплолюбивых рыб на наиболее прогреваемых участках водоемов и отход их на глубину во время похолодания; сардина концентрируется в слоях воды с температурой 18-26°С, а сайра - при 14-18°С. При организации промышленного лова обязательно учитывают распределение рыб в водоеме в соответствии с излюбленной ими температурой.

· Молодь рыб оказывается более устойчивой к колебаниям температуры, чем взрослые. Например, у карпа менее уязвимой к действию пониженной температуры является молодь сразу после выклева, т. е. когда она практически не может сменить биотоп и преимущественно висит, приклеившись к субстрату. В это время она может выносить даже заморозки до -0,1°С. Несколькими днями позже холодостойкость теряется, но молодь уже может перейти в более глубокое место.

· По способности переносить колебания температуры рыб разделяют на эвритермных (могут жить в широком диапазоне температур) и стенотермных (диапазон возможных температур узок). Эвритермные рыбы приспособились к жизни в изменяющихся условиях и переносят относительно широкие колебания температуры (щука, окунь, сазан, карп, карась, линь и др.)

· К стенотермным относят рыб, эволюция которых проходила в более или менее стабильных условиях, - обитателей тропической и полярной зон, а также больших глубин, где температура меняется мало.

· Однако и в пределах требуемой температуры повышение или понижение ее вызывает соответствующие сдвиги жизнедеятельности рыб. При этом изменяется реакция организма на одни и те же факторы среды: при повышении температуры увеличивается потребление кислорода, ускоряется развитие, усиливаются поиск, потребление и переваривание пищи - увеличивается желудочная секреция и моторная деятельность кишечника, ускоряется всасывание растворенных веществ из окружающей среды, повышается чувствительность к токсикантам и т. д. При этом большую роль играет состояние организма (возраст, степень половой зрелости и др. ). Чрезмерное охлаждение ведет к простуде (помутнение покровов, отслоение эпидермиса). Резкая смена температуры воды сказывается неблагоприятно на организме рыбы, поэтому необходимо выравнивать температуру воды при пересадках рыбы.

· Температура, выходящая из границ, допустимых для данного вида, вызывает шок и последующую гибель рыбы.

· Температура, при которой жизнь рыбы становится невозможной, называется пороговой. Приспособление организма к температурным условиям среды происходит на клеточном уровне. Пороговые температуры являются как бы пределом сопротивления клеток организма повреждающему действию внешней температуры. Поскольку эта способность у разных видов различна, то температурные пороги их неодинаковы. Однако на личинках карпа было показано, что пороговая температура может несколько меняться в зависимости от температуры выращивания. Более того, температурный режим содержания производителей сказывается на теплоустойчивости потомства. В рыбоводстве температура, при которой выращивают рыб, определяет быстроту развития, интенсивность питания и дыхания рыб, затраты кормов на прирост, направленность пластического обмена, скорость созревания, устойчивость потомства к колебаниям температуры и т. д.

· На стимулирующем воздействии повышенной температуры, если она не превышает максимальную, основываются и большие перспективы использования для рыбоводства теплых вод. Это касается прежде всего промышленных и сбросных вод электростанций и геотермальных вод.

· Большая растворяющая способность воды обеспечивает наличие различных как жизненно важных, так и вредных химических соединений во внешней среде и в организме рыбы.

· Растворенные в воде газы. Растворимость разных газов в воде не одинакова. Быстрее других растворяется двуокись углерода, далее - кислород, медленнее всех - азот. Поэтому для водоемов характерно иное соотношение газов, чем для атмосферы: в воде больше СО2 (4% против 0,05%) и кислорода (34% против 21%), но меньше азота (62% против 79%). При нормальных условиях отношение кислорода и азота в воде составляет почти 1: 2, в воздухе - 1: 4. Однако абсолютное содержание кислорода в воде в 20-30 раз меньше, чем в воздушной среде. Кислород из атмосферы диффундирует в воду медленно, поэтому содержание его убывает от поверхности к глубине. Многообразные физические и биологические процессы в водоеме (циркуляционные токи, ветровое перемешивание, жизнедеятельность растений и животных и т. д. ) являются причиной крайнего непостоянства кислородного режима малых водоемов.

· Подавляющее большинства рыб дышит растворенным в воде кислородом, поэтому содержание его в окружающей среде имеет для них первостепенное значение.

· Разные виды рыб нуждаются для нормального дыхания в разном количестве кислорода. Наиболее требовательным, обитателям холодных, проточных водоемов (например, лососевым) необходима концентрация 4,4-7,0 мг/л, окунь Perca fluviatilis и ёрш Acerina cernua могут жить при содержании кислорода 2,5 мг, а наиболее выносливые рыбы нашей фауны караси не испытывают угнетения при концентрации 0,3 мг/л.

· Зависимость жизнедеятельности рыб от содержания в воде кислорода особенно заметна в период эмбрионального развития. Концентрация кислорода очень сильно влияет на скорость развития и выживаемость эмбрионов: так, при содержании кислорода 1,2 мг/л развитие карпа длилось 120 ч, причем вылупилось 40% эмбрионов; при концентрации кислорода 9,0-12,0 мг/л длительность развития сократилась до 70-68 ч, а количество вылупившихся эмбрионов возросло до 92-98%.

· Морские рыбы более требовательны к содержанию кислорода в воде, чем пресноводные. В воде морей кислорода растворено много, а колебания его содержания малы. Непостоянство же кислородного режима малых водоемов, в которых нередки заморы - летние и зимние, - заставляет пресноводных рыб приспосабливаться к дефициту кислорода.

· Однако избыток кислорода в воде также неблагоприятен для рыб. При перенасыщении воды кислородом (>200%) у рыб появляются пузырьки газа в кровеносных сосудах, затем наступают судороги и смерть.

· Большое значение для нормальной жизнедеятельности рыб имеет содержание в воде двуокиси углерода. При повышенном содержании ее в воде падает способность крови поглощать из воды кислород, дыхание учащается, но газообмен становится менее интенсивным.

· Вода способна поглощать большое количество двуокиси угдерода: при t= 15°С в 1 л воды может раствориться больше 1 л СО2; однако в природе содержание свободной СО2 в воде ничтожно, так как она связывается кальцием. Если этого не происходит, то наступает отравление рыбы двуокисью углерода и замор. Способность противостоять повышению концентрации СО2 у разных видов рыб неодинакова. Так, форель более чувствительна, чем карп, карась или линь.

· Критическими уровнями СО2 в 1 л являются: для форели 120- 140мг, для толстолобика - 200 (молодь) - 300 (взрослая рыба), для карпа - 200, для линя - больше 400 мг.

· Значение рН, обусловленное концентрацией водородных ионов, является одним из важнейших абиотических факторов внешней среды, определяющим видовой состав и численность гидробионтов водоема. Воздействие рН на жизнедеятельность гидробионтов связано с тем, что способность гемоглобина использовать растворенный в воде кислород при различных концентрациях водородных ионов неодинакова. Вследствие этого изменение рН воды приводит к изменению интенсивности дыхания и кислородного порога.

· Наиболее благоприятно для дыхания большинства рыб значение рН, близкое к нейтральному. При сильных сдвигах рН в кислую и щелочную стороны (т. е. при увеличении или уменьшении концентрации водородных ионов) затрудняется дыхание, возрастает кислородный порог, ослабляется интенсивность питания.

· По отношению к колебаниям рН среды рыб делят на стено- и эвриионных. В воде морей рН изменяется мало (7,5-8,5), морские рыбы относятся к стеноионным. Пресные воды в отличие от морских характеризуются неустойчивостью рН. Это вызвано разнообразными факторами, направляющими ход биохимических процессов в водоеме: характером почв ложа и водосбора, химическим составом водоисточника, фотосинтетической деятельностью растений, особенно в период “цветения” воды, и т. д. В результате наблюдаются резкие годовые, сезонные и суточные колебания рН. Поэтому большинство пресноводных рыб приспособилось переносить значительные изменения рН и являются эвриионными.

· Однако возможные границы рН, в которых могут жить пресноводные рыбы, неодинаковы и при прочих равных условиях зависят прежде всего от вида. Из объектов рыборазведения наиболее выносливы карась и карп; щука переносит колебания рН в пределах 4,0-8,0, ручьевая форель - 4,5-9,5, карп - 4,3-10,8, карась выдерживает снижение рН до 4,5.

· Деятельность человека, изменяющая гидрохимический режим водоема, сильно отражается и на уровне рН. В водохранилищах, образованных при зарегулировании стока рек, концентрация водородных ионов колеблется в широких пределах. Сточные воды предприятий химической, металлургической, целлюлозной и другой промышленности содержат как кислоты, снижающие рН воды, так и щелочи, соду и другие компоненты, повышающие рН. Значение рН среды оказывает сильнейшее влияние на устойчивость рыб к различным токсическим веществам, входящим в состав промышленных стоков.

· Сероводород, образующийся в водоемах при отсутствии кислорода, оказывает на рыб губительное действие. Минимальная его летальная концентрация для рыб 1,0мг/л, однако разные рыбы реагируют неодинаково. Ручьевая форель при концентрации H2S 0,86 мг/л погибает через 24 ч, карп в то же время может жить при концентрации 6,3 мг/л.

· Солевой состав воды. Воздействие на рыб растворенных в воде солей заключается прежде всего в том, что от их количества зависит уровень осмотического давления.

· Большое значение имеет также и состав солей, так как они и непосредственно, и косвенно влияют на жизнедеятельность рыб.

· В организм рыб соли проникают через ротовую полость, жабры и кожу, причем проникновение солей через кожу зависит от плотности чешуйного покрова. Из общего количества поглощенных из окружающей воды солей фосфора у чешуйчатого карпа через жабры и ротовую полость проходит 93%, а через поверхность тела - 6,3%. У зеркального карпа на долю жабр и ротовой полости приходится 87,9%, а на поверхность тела- 12,1%. Попадая в организм, соли включаются в обмен веществ. Так, при увеличении концентрации солей фосфора в воде до 10 мг/л резко ускорялся рост молоди осетровых.

· Велико косвенное влияние солей на рыб. Количество и состав солей, выносимых с площади водосбора или внесенных при удобрении прудов, определяют богатство водоема биогенными веществами, а значит, создают основу для развития пищевых организмов для рыб (фитопланктон, зоопланктон, бентос), т. е. кормности водоема.

· Установлена прямая зависимость между наличием в воде фосфора, распределением планктона и уловами морских пелагических рыб.

· Воздействие человека на природу - развитие промышленности и судоходства, создание новых и реконструкция существующих водных систем, промышленные и бытовые стоки, интенсификация сельского хозяйства, включающая в широких масштабах применение химических средств защиты растений, удобрение полей и прудов, дезинфекция и мелиорация прудов и другие мероприятия - влечет за собой изменение режима естественных вод. Влияние этих факторов на гидробионтов может быть или прямым, или косвенным -через изменение температурного, газового, солевого режимов.

· В настоящее время загрязнение охватывает уже и океаны, но наиболее сильно оно проявляется во внутренних водоемах.

· Кислоты и щелочи сточных вод не только сдвигают рН до границ, смертельных для рыб, но и сами являются ядами, вызывая патоморфологические изменения органов (ожоги жабр и кожи, замедление роста) и гибель рыб.

· Летальными дозами являются содержание в 1 л воды 134 мг серной кислоты, 159 мг соляной, 200 мг азотной. Борная кислота в концентрации 62-500 мг/л снижала темп роста предличинок севрюги, а в концентрации 1500-2500 мг/л вызывала их гибель. Среди минеральных веществ стоков особенно ядовиты цианиды, соединения ртути, мышьяка, свинца, меди. Смертельными дозами для гольяна, карпа, горчака и дафний является содержание в 1 л KCN -0,06 мг, HgCl2 - 0,002 мг, NaHAsO3 - 0,5 мг. Соединения свинца вызывают гибель рыб в концентрации 10-150 мг/л, планктонных рачков - 0,5 мг/л. Гибель рыб могут вызвать соединения железа при содержании 0,2мг/л, алюминия 0,5мг/л, натрия 10-15 г/л, кальция 15 г/л и т. д.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.