|
Гидразид изоникотиновой кислоты, его производные и аналогиГидразид изоникотиновой кислоты, его производные и аналогиМИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ТАВРИЧЕСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМ. В.И. ВЕРНАДСКОГО Химический факультет Кафедра общей химии Системы химического мониторинга (курсовая работа) Хомяков Денис Васильевич студент IV курса, специальности – химия Научный руководитель: кандидат химических наук, доцент Работягов Константин Васильевич Симферополь, 2002 ОГЛАВЛЕНИЕ Стр. ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ ИССЛЕДОВАНИЙ МОДЕЛЬНОГО ОБЪЕКТА 6 ФИЗИОЛОГИЧЕСКАЯ АКТИВНОСТЬ МОДЕЛЬНОГО ОБЪЕКТА, ЕГО ПРОИЗВОДНЫХ И АНАЛОГОВ 8 КЛАССИФИКАЦИЯ И СРАВНЕНИЕ АНТИБАКТЕРИАЛЬНЫХ ПРЕПАРАТОВ 13 КОМБИНИРОВАННЫЕ ПРЕПАРАТЫ НА ОСНОВЕ ГИНК 16 И ЕГО ПРОИЗВОДНЫХ 16 ИСПОЛЬЗОВАНИЕ ПРОИЗВОДНЫХ МОДЕЛЬНОГО ОБЪЕКТА КАК РЕАГЕНТОВ ПРИ ПРОИЗВОДСТВЕ БИОЛОГИЧЕСКИ АКТИВНЫХ ПРЕПАРАТОВ 18 ВЫВОДЫ 19 СПИСОК ЛИТЕРАТУРЫ 21 ПРИЛОЖЕНИЯ 24 ВВЕДЕНИЕ Системы мониторинга представляют собой набор средств и инструкций, при помощи которых можно за сравнительно короткий период времени получить необходимую информацию по интересующему нас предмету, а также вести наблюдения за объектом в течение конечного промежутка времени. Системы химического мониторинга с использованием ЭВМ (как локально, так и в составе сетей) имеют то отличие, что поиск непосредственно по химической формуле соединения крайне затруднен тем, что используемые в сети Internet, локальных и корпоративных интрасетях алгоритмы используют индексный поиск по гиперссылкам. Встроенные в поисковые машины алгоритмы поиска также не способны воспринимать поисковые запросы в виде химических формул, не считая нескольких коммерческих, узко профильных узлов, способных при наличии необходимых средств для редактирования химических формул, производить операции поиска, да и то, как правило, использую лишь свою базу данных. Многие уникальные базы данных, например "FLAME" в РХТУ им. Д.И. Менделеева, закрыты от поисковых машин и от несанкционированного использования, так как находятся в интрасетях университетов и других научных заведений, фирм, предприятий. Однако, некоторая часть материалов доступна для просмотра в Internet, хотя поиск необходимой информации затруднен наличием лишь индексного поиска и полным отсутствием возможности отслеживать информацию во времени. Поиск с использованием старых протоколов доступа (FTP) ещё более сложен и допускает только индексный поиск. Для разработки общих подходов в исследовании необходимо выбрать модельные объекты, как можно точнее имитирующие реальные условия. В качестве объекта мониторинга взяты гидразиды карбоновых кислот, и в частности, гидразид изоникотиновой кислоты и его производные. Эти соединения широко используются в различных отраслях науки, техники и медицины, хорошо изучены, имеется большое число публикаций по их синтезу, свойствам и строению, изучаются уже достаточно давно (около 100 лет), перспективны для дальнейшего изучения и усовершенствования. Гидразиды являются перспективными азотсодержащими лигандами для синтеза координационных соединений с уникальными свойствами, которые могут найти широкое применение на практике. Особое место занимает ярко выраженное противотуберкулезное действие гидразида изоникотиновой кислоты и его производных. Детально рассмотрены перспективы и тру дности лечения этого опасного заболевания, медикаментозная база, перспективы ее пополнения и оскудения вследствие потери препаратом эффективности. Замена атомов водорода в молекуле гидразина предельными или ароматическими радикалами приводит к алкил (метил)- или арил (фенил) гидразинам соответственно. Однако структурные возможности молекулы гидразина значительно шире. Каждая из аминогрупп в ее составе обладает нуклеофильными свойствами, таким образом, гидразин - динуклеофил, а следовательно, в зависимости от условий может вступать в реакции с одной или двумя электрофильными частицами [1]. В качестве типичных (но не единственных) примеров нуклеофильных свойств гидразина служит его взаимодействие с производными карбоновых кислот (RCOX) и карбонильными соединениями. Эти реакции приводят к новым органическим производным гидразина - гидразидам и дигидразидам, гидразонам и азинам [1]. Особый интерес представляют гидразиды карбоновых кислот, в частности, гидразид изоникотиновой кислоты и его производные, представляющие собой широкий спектр биологически активных веществ и медицинских препаратов. Гидразиды карбоновых кислот – не единственные производные гидразина, нашедшие применение в медицине. Соли гидразина и неорганических кислот были открыты значительно раньше, но физиологическая активность неорганических солей гидразина была открыта лишь в начале 60-х гг., открыв новую страницу в фармакологии гидразина и его производных. Некоторые из них до сих пор используются в медицинской практике, как, например сульфат гидразина, известный своей высокой противораковой активностью и с успехом заменяющий значительно более дорогие соединения платины (Pt(NH3)2Cl2 и др.): Гидразин-сульфат под названием "Сигразин" нашел применение в медицине при лечении больных раком. Онкологические больные обычно испытывают сильное истощение, быструю потерю веса и аппетита. Эти явления вызываются нарушениями углеводного обмена. Известно, что глюкоза в клетках сначала трансформируется в молочную кислоту. В дальнейшем молочная кислота через ряд стадий превращается в углекислоту. Оказалось, что в раковых клетках метаболизм молочной кислоты прекращается. Более того, происходит обратное превращение молочной кислоты в глюкозу. Углеводный обмен - основной источник энергии клетки. Если глюкоза не метаболизирует должным образом, организм, чтобы получать энергию, начинает расщеплять жиры и другие вещества, в том числе составляющие мышечную ткань. В результате и развиваются слабость и потеря веса. Раковые больные обычно умирают не от опухолей, а от пневмонии, инфекции и других болезней, то есть последствий истощения, ослабляющих сопротивляемость организма. Выяснилось, что гидразин- сульфат является ингибитором фермента, отвечающего за синтез глюкозы из молочной кислоты, следовательно, гидразин-сульфат прекращает нарушения углеводного обмена раковых клеток. Состояние раковых больных при приеме гидразин сульфата, как правило, улучшается. Более того, гидразин-сульфат обладает способностью задерживать рост и даже вызывать распад некоторых опухолей. В дополнение к этому гидразин-сульфат, как, впрочем, и многие другие производные гидразина, является ингибитором еще одного фермента - моноаминооксидазы, а это вызывает улучшение общего тонуса. Гидразин- сульфат, лекарственные свойства которого были обнаружены в 60-х годах, в настоящее время занял прочное место среди препаратов, применяемых в онкологической практике. Однако при длительном приеме в больших дозах гидразин-сульфат может оказывать обратное, то есть канцерогенное, действие. Если регулярно вводить мышам гидразин с пищей, он вызывает легочные аденомы и аденокарциномы. Внутрибрюшинные инъекции вызывают образование сарком или лейкемий. При ингаляциях развиваются лимфосаркомы и клеточные саркомы. Сообщалось о смертных случаях, вызванных раком, среди рабочих, многие годы имевших контакты с гидразином [1]. ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ ИССЛЕДОВАНИЙ МОДЕЛЬНОГО ОБЪЕКТА Разработки в области сельскохозяйственного использования гидразидов карбоновых кислот Особое внимание в последнее время уделяется гидразиду малеиновой кислоты. Японские ученые разработали оригинальный способ борьбы с аллергией на пыльцу деревьев. Исследования показали, что введение в кедр экологически безопасного малеинового гидразида позволяет уменьшить образование пыльцы на 96 процентов. Исследования пока находятся на стадии экспериментов, сообщает Courier.com.ua (22/05/2001). Гидразид малеиновой кислоты используется как экологически безопасное химическое вещество для предотвращения прорастания картофеля и лука. [2]. Разработки в области медицинского использования гидразидов карбоновых кислот Гидразиды фосфорилированных карбоновых кислот и их производные в последнее время нашли применение в медицинской практике в качестве психотропных веществ (ноотропов и антидепрессантов) [3]. Для проведения лабораторных исследований по эффективности противовирусных свойств различных веществ и определения степени чувствительности клинических изолятов вирусов к противовирусным средствам в последнее время получены штаммы вирусов, генетически резистентные к гидразиду 2-фенилхинолин-4-карбоновой кислоты, или белвтазиду (вирус ЕСНО- 6) и многим другим лекарственным препаратам [4]. Для идентификации туберкулезных бацилл Mycobacterium bovis разработана среда Левенстейна-Йенсена с ТСН (тиокарбонил-гидразид ) [5]. В экспериментальных целях получен Флонивин – БС (новый медицинский препарат) (чистая сухая культура бациллы штамма IP 5832). Культура бациллы штамма IP 5832 представляет собой мутант, обладающий специфическими биохимическими характеристиками по отношению к В. cereus и В. subtilis. Штамм Bacillus IP 5832 генетически резистентен ко всем сульфаниламидам, к гидразиду изоникотиновой кислоты, нистатину и большинству антибиотиков широкого спектра действия [6]. Разработан новый экономичный экологически чистый процесс получения координационных соединений биометаллов (Cu, Fe, Co, Ni, Mn,) биолигандами с использованием неводнымх растворов гидразидов различных карбоновых кислот [7]. Разработки в области технического использования гидразидов карбоновых кислот Большое внимание уделяется в настоящее время защите металлов от коррозии, безотходным технологиям и переработке отходов производства. Предлагается использовать гидразиды алифатических карбоновых кислот, а также симметричные 1,2-диацилгидразины как собиратели для эффективного концентрирования ионов металлов из промышленных сточных вод [8], гидразиды общей формулы R-C(O)NHNH2 как эффективные ингибиторы коррозии металлов [9, 10]. В тоже время установлено, что прочные внутрикомплексные соединения с ионами металлов образуют диацилгидразины общей формулы R1C(O)NHNHC(O)R2 [11]. Проведенные исследования показавают перспективность применения несимметричных диацилгидразинов, где R1 - во всех случаях был остаток олеиновой кислоты, а R2: H3C-, i-H7C3-, 3-C5H5N- и Ph- (методика эксперимента – [12]) как реагентов для формирования конверсионных покрытий для защиты металла от коррозии [13]. Разработки в области использования гидразидов карбоновых кислот в строительстве Разработки в этой области ведутся очень активно, но в Internet они не доступны, так как большая часть разработок носит коммерческий характер, и, как следствие, публикуются лишь цель работы и результаты исследования. В бывшем СССР большой вклад сделан Дербишером В. Е (Волгоградский государственный технический университет ( http://www.vstu.ru/)), как наиболее ценные разработки следует отметить применение в цементных композициях гидразидов полимерных карбоновых кислот и других производных гидразина, отходов нефтехимии; синтез и исследование волокнистых полимерных композиционных материалов пониженной горючести на основе эластомерных производных гидразина и многие другие. ФИЗИОЛОГИЧЕСКАЯ АКТИВНОСТЬ МОДЕЛЬНОГО ОБЪЕКТА, ЕГО ПРОИЗВОДНЫХ И АНАЛОГОВ ИЗОНИАЗИД (Isoniazidum) Гидразид изоникотиновой кислоты [14]: [pic] Синонимы: ГИНК, Тубазид, Андразид, Хемиазид, ИНХ, Котиназин, Динакрин, Дитубин, Эутизон, Гидранизил, Изокотин, Изониказид, Изоницид, Изонизид, Изотебезид, Неотебен, Ниадрин, Никазид, Никотибина, Никозид, Нидразид, Пелазид, Пиказид, Пиразидин, Римицид, Римифон, Тебексин, Тибизид, Зоназид и др Препараты ГИНК применяют с 1952 г., хотя изониазид был синтезирован в Праге на 40 лет раньше. Главным из них считают изониазид (Isoniazidum), O. Применяют также метазид, фтивазид, ларусан, салюзид и некоторые другие. Фармакологическое действие. Является основным представителем производных изоникотиновой кислоты, нашедших применение в качестве противотуберкулезных средств. Другие препараты этой группы (фтивазид и др.) могут рассматриваться как производные гидразида изоникотиновой кислоты. Изониазид обладает высокой бактериологической активностью в отношении микобактерий туберкулеза возбудителей туберкулеза М. tuberculosis (МИК=0,015 мкг/мл). В диких штаммах микобактерий устойчивые формы встречают с частотой 1:100000.. На других распространенных возбудителей инфекционных заболеваний он выраженного химиотерапевтического действия не оказывает. Фармакодинамика. Изониазид бактерициден, действует на быстро и медленно размножающиеся микобактерий, расположенные вне - и внутриклеточно В микобактерий его концентрация в 50 раз выше, чем в окружающей среде. Абсолютно необходимое условие для поглощения изониазида микобактерией — аэробиоз. Оптимум действия изониазида соответствует рН=5,0-8,0 при температуре 37 0С. Вероятные механизмы действия — замена никотиновой кислоты на изоникотиновую в реакциях синтеза никотинамид-аденин- динуклеотида (изо-НАД вместо НАД), повышение активности системы флавиновых ферментов с образованием перекиси водорода вместо воды; либо нарушение синтеза воска, входящего в состав клеточной стенки и определяющего кислотоустойчивость микобактерий туберкулёза. Существуют и другие гипотезы. Возможно формирование устойчивости М. tuberculosis к препаратам ГИНК [25]. Изониазид проявляет высокую активность в отношении микобактерий туберкулеза, особенно активно размножающихся. Положительный результат лечения достигается комбинацией изониазида с другими противотуберкулезными препаратами. Механизм действия — угнетение синтеза миколевых кислот, которые являются компонентом клеточной стенки бактерий. Другие микроорганизмы и клетки макроорганизма не содержат миколевых кислот, чем объясняется высокая избирательность производных изоникотиновой кислоты. Устойчивость к ним микобактерии развивается медленнее, чем к стрептомицину и рифампицину. Для Mycobacterium tuberculosis минимальная ингибирующая концентрация (МИК) изониазида составляет 0,05–0,025 мг. Резистентность к изониазиду исчезает быстро, если он применяется в качестве монотерапии [15, I, II, V]. Изониазид дезактивируется в организме путём ацетилирования ферментом N- ацетилтрансферазой и гидролиза. Ацетилирование — важный путь метаболизма многих веществ, содержащих группу NH2 [25]. МЕТАЗИД ( Methazidum ). 1,1-Метилен-бис - (изоникотиноилгидразид). [pic] Практически нерастворим в воде. Фармакологическое действие. Высокоактивен в отношении микобактерий туберкулеза. По противотуберкулезной активности близок к фтивазиду. Препарат обычно хорошо переносится. При длительном применении возможны такие же осложнения, как при приеме других производных гидразида изоникотиновой кислоты [16, 17, 18, III, IV]. САЛЮЗИД(Saluzidum)3-карбокси–3,4-диметоксибензаль-изоникотиноилгид- разон: [pic] По фармакологической активности не отличается от фтивазида [19, II, III, IV]. САЛЮЗИД РАСТВОРИМЫЙ (Saluzidumsolublle) Диэтиламмониевая соль 2-карбокси- 3,4-диметоксибензаль – изоникотиноилгидразона моногидрат: [pic] Синонимы: Опиниазид. Фармакологическое действие. Обладает высокой бактериостатической (препятствующей размножению бактерий) активностью в отношении микобактерий туберкулеза [19, II, III, IV]. ФЕНАЗИД (Fenazid) (Изоникотиноилгидразино-O,N) железа(II) сульфат, дигидрат. (хелатный комплекс изониазида и двухвалентного железа): [pic] Фармакологическое действие Активен в отношении микобактерий туберкулеза. В основе фармакологического действия феназида лежит модификация молекулы изониазида путем комплексообразования с железом. Это обеспечивает большую безопасность химиотерапии туберкулеза, поскольку блокированный железом хелатный узел молекулы ГИНК теряет способность к взаимодействию с активными центрами металлосодержащих ферментов, а включение первичной аминогруппы гидразина в хелатный цикл комплекса препятствует взаимодействию с N - ацетилтрансферазой. В связи с этим феназид является малотоксичным препаратом, при применении которого не требуется коррекции разовых и курсовых доз препарата в зависимости от скорости его ацетилирования [IV, V]. ФТИВАЗИД (Phthivazidum) 4-Пиридинкарбоновой кислоты [(4-гидрокси-3- метоксифенил) метилен] гидразид, 3-Метокси-4-оксибензилиденгидразид изоникотиновой кислоты, изоникотиноил-(3-метокси-4-оксибензаль) -гидразон: [pic] Синонимы: Ваницид, Ваниллаберон, Ванизид. Фармакологическое действие. Обладает высокой бактериостатической (препятствующей размножению бактерий) активностью в отношении микобактерий туберкулеза. Нарушает синтез фосфолипидов, образует интра - и экстрацеллюлярные хелатные комплексы с двухвалентными ионами, тормозя окислительные процессы и синтез РНК и ДНК. По химиотерапевтическим свойствам и показаниям к применению близок к изониазиду (изониазид образуется при его метаболизме в организме – в печени). По сравнению с изониазидом медленнее всасывается из желудочно-кишечного тракта; при его применении создается несколько меньшая концентрация гидразида изоникотиновой кислоты в крови. Т 1/2 - 2-5 ч. Выводится почками (95% в виде метаболитов), небольшое количество – кишечником [20, 21, I, II, III, IV, V]. Производные ГИНК как антидипрессанты Антидипрессанты – ингибиторы моноаминооксидазы (ИМАО). Различают обратимого и необратимого действия. Необратимого действия – ниаламид (1-[2- бензилкарбамоил)- этил]-2-изоникотиноилгидразид: [pic] Ипрониазид (исключен из списка лекарственных препаратов - более токсичен, чем ниаламид): [pic] ИМАО часто более эффективны, чем другие антидепрессанты (трициклические). В психиатрии используются при депрессиях, кроме того, уменьшают частоту и интенсивность приступов стенокардии. Опубликованы данные об эффективности ниаламида в комплексной терапии хронического алкоголизма.Кроме того, ниаламид потенциирует действие барбитуратов, аналгетиков, местных анестетиков [23]. КЛАССИФИКАЦИЯ И СРАВНЕНИЕ АНТИБАКТЕРИАЛЬНЫХ ПРЕПАРАТОВ Классификация антибактериальных препаратов основана на эффективности их влияния на возбудителя. Американское торакальное общество по профилактике и лечению туберкулёза к потенциально эффективным препаратам относит амикацин, офлоксацин, ципрофлоксацин, рифабутин, клофазимин, р-лактамные и макролидные антибиотики. Центральный комитет Германии по химиотерапии туберкулёза в 1995 г. включил ципрофлоксацин в комбинированную терапию туберкулёза, вызванного микобактериями, устойчивыми к лекарственным препаратам. Фторхинолоны (максаквин и таривид) вошли в стандарты схемы терапии, утверждённые Минздравом России (1998 г.). Классификация противотуберкулёзных препаратов (Международный противотуберкулёзный Союз) I. Наиболее эффективные препараты Синтетический препарат изониазид (ГИНК) Антибиотики: рифампицин II. Препараты умеренной эффективности Антибиотики: Стрептомицин, канамицин, флоримицин (виомицин), циклосерин Синтетические препараты: Этамбутол, этионамид, протионамид, пиразинамид (тизамид) III. Менее эффективные препараты Синтетические препараты: ПАСК, тибон (тиоацетазон) В учебнике инфекционных болезней США (1997 г.) выделены следующие группы препаратов: а. препараты первой линии — изониазид, рифампицин, стрептомицин, пиразинамид и этамбутол; б. препараты второй линии — этионамид, циклосерин, капреомицин и канамицин; в. альтернативные препараты — рифабутин, амикацин, ципрофлоксацин и офлоксацин [25]. Классификация противотуберкулезных препаратов Международного союза борьбы с туберкулезом I группа (препараты высокой эффективности): Изониазид, Рифампицин. II группа (препараты средней эффективности): Стрептомицин, Канамицин, Виомицин, Циклосерин, Этамбутол, Этионамид, Протионамид, Пиразинамид. III группа (препараты низкой эффективности): ПАСК, тиоацетазон. Наиболее высокой активностью в отношении микобактерий туберкулеза обладают изониазид и рифампицин, поэтому стратегия современной химиотерапии пациентов с впервые выявленным туберкулезом строится на использовании сочетания именно этих препаратов. Комбинирование изониазида и рифампицина с другими ПТП I ряда (пиразинамид, стрептомицин и этамбутол) позволяет достичь излечения большинства пациентов. Наряду с комбинацией монокомпонентных средств применяются комбинированные ПТП, представляющие собой различные сочетания препаратов I ряда. Препараты II ряда, или Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |