|
Химия медиХимия медиМинистерство Образования Республики Беларусь Белорусский Национальный Технический Университет Кафедра Химии Реферат на тему: Химия меди Исполнитель: Кузьмич А.Н. гр. 104312 ______________________ Руководитель: Медведев Д.И. ______________________ Минск - 2003 Содержание. | | |стр. | | |Введение |2 | |1. |Историческая справка |4 | |2. |Положение меди в периодической системе Д.И. Менделеева |5 | |3. |Распространение в природе |6 | |4. |Получение |8 | |5. |Физические свойства |10 | |6. |Химические свойства |11 | |7. |Применение |16 | |8. |Сплавы меди |18 | |8.1 |Латуни |18 | |8.2 |Оловянные бронзы |19 | |8.3 |Алюминиевые бронзы |19 | |8.4 |Кремнистые бронзы |20 | |8.5 |Бериллиевые бронзы |21 | |8.6 |Сплавы меди с никелем |21 | | |Заключение |22 | | |Литература |24 | Введение. Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до н. э. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой сравнительной легкостью получения ее из соединений. Особенно важна медь для электротехники. По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%- ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди. Медь - необходимый для растений и животных микроэлемент. Основная биохимическая функция меди – это участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов. Количество меди в растениях колеблется от 0,0001 до 0,05 % (на сухое вещество) и зависит от вида растения и содержания меди в почве. В растениях медь входит в состав ферментов-оксидаз и белка пластоцианина. В оптимальных концентрациях медь повышает холодостойкость растений, способствует их росту и развитию. Среди животных наиболее богаты медью некоторые беспозвоночные (у моллюсков и ракообразных в гемоцианине содержится 0,15-0,26 % меди). Поступая с пищей, медь всасывается в кишечнике, связывается с белком сыворотки крови - альбумином, затем поглощается печенью, откуда в составе белка церулоплазмина возвращается в кровь и доставляется к органам и тканям. Содержание меди у человека колеблется (на 100 г сухой массы) от 5 мг в печени до 0,7 мг в костях, в жидкостях тела - от 100 мкг (на 100 мл) в крови до 10 мкг в спинномозговой жидкости; всего меди в организме взрослого человека около 100 мг. Медь входит в состав ряда ферментов (например, тирозиназы, цитохромоксидазы), стимулирует кроветворную функцию костного мозга. Малые дозы меди влияют на обмен углеводов (снижение содержания сахара в крови), минеральных веществ (уменьшение в крови количества фосфора) и др. Увеличение содержания меди в крови приводит к превращению минеральных соединений железа в органические, стимулирует использование накопленного в печени железа при синтезе гемоглобина. При недостатке меди злаковые растения поражаются так называемой болезнью обработки, плодовые - экзантемой; у животных уменьшаются всасывание и использование железа, что приводит к анемии, сопровождающейся поносом и истощением. Применяются медные микроудобрения и подкормка животных солями меди. Отравление медью приводит к анемии, заболеванию печени, болезни Вильсона. У человека отравление возникает редко благодаря тонким механизмам всасывания и выведения меди. Однако в больших дозах медь вызывает рвоту; при всасывании меди может наступить общее отравление (понос, ослабление дыхания и сердечной деятельности, удушье, коматозное состояние). 1. Историческая справка. Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. Медь и её сплавы сыграли большую роль в развитии материальной культуры. Благодаря лёгкой восстановимости окислов и карбонатов, медь была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Сuprum. В древности для обработки скальной породы её нагревали на костре и быстро охлаждали, причём порода растрескивалась. Уже в этих условиях были возможны процессы восстановления. В дальнейшем восстановление вели в кострах с большим количеством угля и с вдуванием воздуха посредством труб и мехов. Костры окружали стенками, которые постепенно повышались, что привело к созданию шахтной печи. Позднее методы восстановления уступили место окислительной плавке сульфидных медных руд с получением промежуточных продуктов - штейна (сплава сульфидов), в котором концентрируется медь, и шлака (сплава окислов). 2. Положение меди в периодической системе Д.И. Менделеева. Медь (Cuprum), Сu — химический элемент побочной подгруппы первой группы периодической системы элементов Д.И. Менделеева. Порядковый номер 29, атомная масса 63,54. Распределение электронов в атоме меди — Is22s22p63s23p63d104s1. Природная медь состоит из смеси 2-х стабильных изотопов с массовыми числами 63 (69,1%) и 65 (30,9%). Сечение захвата тепловых нейтронов атомов меди 3,59-10-28 м-2. Путем бомбардировки никеля протонами или дейтронами искусственно получают радиоактивные изотопы меди 61Сu и 64Сu с периодами полураспада 3,3 и 12,8 ч соответственно. Эти изотопы обладают высокой удельной активностью и используются в качестве меченых атомов. В химическом отношении медь занимает промежуточное положение между элементами первой плеяды VIII группы и щелочными элементами I группы периодической системы. Ниже приведены значения потенциалов ионизации атомов меди (в эВ): |1-й | |2-й | |3-й | |4-й | |5-й | |6-й | |7-й | |8-й | | | |7,72 | |20,29 | |36,83 | |58,9 | |82 | |106 | |140 | |169 | | | Заполненная d-оболочка меди менее эффективно экранирует s-электрон от ядра, чем оболочка инертного газа, поэтому первый потенциал ионизации меди выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны d-оболочки, теплота испарения и температура плавления меди значительно выше, чем у щелочных металлов, что обусловливает более «благородный» характер меди по сравнению с последними. Второй и третий потенциалы ионизации меньше, чем у щелочных металлов, что в значительной степени объясняет проявление свойств меди как переходного элемента, который в степени окисления II и III имеет парамагнитные свойства окрашенных ионов и комплексов. Медь(I) также образует многочисленные соединения по типу комплексов переходных металлов (табл. 1). Таблица 1 Состояние окисления и стереохимия соединений меди. |Состояние |Координационное |Геометрия |Примеры | |окисления |число | |соединений | |Cu(I) d10 |2 |Линейная |Cu2O | | |3 |Плоская |K[Cu(CN)2] | | |4 |Тетраэдр |Cu(I) | |Cu(II) d9 |4 |Тетраэдр (искажённый) |Cs[CuCl4] | | |5 |Тригональная бипирамида|[Cu(Dipy)2I]+ | | |5 |Квадратная пирамида |[Cu(ДМГ)2]2(тв)| | |4 |Квадрат |CuO | | |6 |Октаэдр (искажённый) |K2CuF4, CuCl2 | |Cu(III) d8 |4 |Квадрат |KCuO2 | | |6 |Октаэдр |K3CuF6 | П р и м е ч а н и е. Dipy – дипиридил; ДМГ – диметилглиоксим. 3. Распространение в природе. Среднее содержание меди в земной коре 4,7-10-3 % (по массе), в нижней части земной коры, сложенной основными породами, её больше (1-10-2 %), чем в верхней (2-10-3 %), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды меди, имеющие большое промышленное значение. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и окислы. Медь - важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2-10-4 %, известны организмы - концентраторы меди. В таёжных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается её избыток в почвах и растениях, отчего болеют домашние животные. В речной воде очень мало меди, 1-10-7 %. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7-10-3 %), а морская вода резко недосыщена медью (3-10-7 %). В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд меди в песчаниках. Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение. Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CuFeS2. В природе он встречается главным образом в смеси с железным колчеданом FeS2 и пустой породой, состоящей из оксидов Si, Al, Ca и др. Часто сульфидные руды содержат примеси благородных металлов (Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных элементов (Ge и др.). Содержание меди в руде обычно составляет 1—5%, но благодаря легкой флотируемости халькопирита его можно обогащать, получая концентрат, содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке (Катанта, Замбия), Америке (Чили, США, Канада). 4. Получение. Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный). В мировой практике 80 % меди извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего родства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием. На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь подачи 300 м2 и более (30 м; 10 м), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды). Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд. Богатые кусковые сульфидные руды (2-3 % Cu) с высоким содержанием серы (35-42 % S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной серы. Медь в этом процессе также концентрируется в штейне. Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической меди и SO2. Эту черновую медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака медь для восстановления растворённой в ней Cu2O "дразнят", погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкислённым H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную медь промывают водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники меди концентрируются в анодном шламе, из которого их извлекают специальной переработкой. Наряду с пирометаллургическими применяют также гидрометаллурги-ческие методы получения меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора меди, либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении. 5. Физические свойства. Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Имеет гранецентрированную кубическую решетку с параметром а = 0,36074 нм, плотность 8,96 кг/м3 (20° С). Ионные радиусы меди (в нм) приведены ниже: | |По Белову и Бокию|По Гольдшмидту |По Полингу | |Cu+ |0,098 |0,095 |0,096 | |Cu2+ |0,080 |0,070 |— | Основные физические свойства меди Температура плавления, °С 1083 Температура кипения, °С 2600 Теплота плавления, кДж/г-ат. 0,7427 Теплота испарения, кДж/г-ат. 17,38 Удельная теплоемкость, Дж/(г.град) (20°С) 0,022 Теплопроводность, Дж/(м.град.с) (20°С) 2,25-10-3 Электрическое сопротивление, Ом.м (20°С) 1,68-Ю-4 Удельная магнитная восприимчивость, 0,086.10-6 абс. эл.-магн. ед./г (18 °С) Медь — вязкий, мягкий и ковкий металл, уступающий только серебру высокой теплопроводностью и электропроводностью. Эти качества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности. 6. Химические свойства. Медь — электроположительный металл. Относительную устойчивость ее ионов можно оценить на основании следующих данных: Cu2+ + e > Cu+ E0 = 0,153 B, Сu+ + е > Сu0 E0 = 0,52 В, Сu2+ + 2е > Сu0 E0 = 0,337 В. Медь вытесняется из своих солей более электроотрицательными элементами и не растворяется в кислотах, не являющихся окислителями. Медь растворяется в азотной кислоте с образованием Cu(NO3)2 и оксидов азота, в горячей конц. H2SO4 — с образованием CuSO4 и SO2. В нагретой разбавленной H2SO4 медь растворяется только при продувании через раствор воздуха. Стандартные окислительно-восстановительные потенциалы ионов меди в водных растворах по отношению к водородному электроду при 25° С приведены в табл. 2. Таблица 2. Стандартные окислительно-восстановительные потенциалы ионов меди. |Уравнение полуреакции |EL В | |HCuO2- + ЗН+ + е = Сu+ + 2Н2О |1,73 | |CuO22- + 4Н+ + е = Сu+ + 2Н2О |2,51 | |HCuO2- + ЗН+ + 2е = Сu0 + 2Н2О |1,13 | |СuО22- + 4Н+ + 2е = Сu0 + 2Н2О |1,52 | |2Сu2+ + Н2О + 2е = Сu2О + 2Н+ |0,20 | |2НСuО2- + 4Н+ + 2е = Сu2О + ЗН2О |1,78 | |2CuO22- + 6Н+ +2е = Сu2О + ЗН2О |2,56 | |СuО + 2Н+ + е = Сu+ + Н20 |0,62 | Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |