|
Программа для поступающих в вузы (ответы)Общая формула ВЭУ nsІnpіnd° (азот - 2sІ2pі). Азот представляет собой бесцветный газ, фосфор является кристаллическим веществом и существует в виде трех модификаций – белый, красный и черный, мышьяк и сурьма – металлоподобные кристаллические вещества серого цвета, висмут – серебристо- белый мягкий металл. Азот в промышленности получают ректификацией воздуха, в лаборатории – окислением аммиака (1), реакциями внутримолекулярного окисления- восстановления соединений азота (2), восстановлением азотной кислоты (3): 1. 2NH3 + 3CuO > N2 + 3Cu + 3H2O; 2. NH4NO2 > N2 + H2O; 3. 5Mg + 12HNO3(p) > N2 + 5Mg(NO3)2 + 6H2O. Фосфор – в электрических печах по реакции: Ca3(PO4)2 + 5C + 3SiO2 > P2 + 3CaSiO3 + 5CO. Мышьяк – термическое разложение арсенопирита без доступа воздуха: FeAsS > As + FeS. Сурьма – сплавление сульфида сурьмы с железом: Sb2S3 + 3Fe > 2Sb + 3FeS. В ряду N – Bi усиливаются металлические свойства. Азот и фосфор – типичные неметаллы; мышьяк и сурьма имеют как металлические, так и неметаллические модификации; висмут – неметалл. Устойчивость неметаллических модификаций в этом ряду падает, металлических – растет. Молекулярный азот мало активен, при комнатной температуре реагирует только с литием. При активации молекул азот окисляет многие металлы, образуя нитриды; окисляется только при взаимодействии с кислородом и фтором. Остальные элементы обладают более высокой химической активностью. Они могут окисляться и восстанавливаться, легко реагируют с рядом неметаллов и многими металлами. С кислотами-неокислителями они не реагируют, при нагревании взаимодействуют с кислотами-окислителями. При переходе от мышьяка к висмуту стабилизируется более низкая степень окисления +3; химическая связь в соединениях становиться все более ионной; основные свойства оксидов и гидроксидов усиливаются. |N2 + H2 > NH3 (t); | |Э + Г2 > NF3; PГ3, PГ5; As, Sb, Bi – ЭГ3, ЭГ5; | |Э + О2 > NО; P4О6, P4О10; As, Sb, Bi – Э2О3; | |Э + S > N2; ЭxSy; | |P + N2 > P3N5; | |Э + С > C2N2; CP3. | |Э + H2SO4(k) > HAsO2; Sb, Bi – Э2(SO4)3; | |Э + H2SO4(p) > | |Э + NaOH > PH3 + NaH2PO2; Na3AsO3; | |P + H2O > PH3 + H3PO2; | |Э + HNO3(p) > H3AsO4; Sb2O3; Bi(NO3)3; | |Э + HNO3(k) > P, As – H3ЭO4, Sb2O5. | Важнейшими элементами являются азот и фосфор. Рассмотрим более подробно их соединения. Для них известны водородные соединения состава ЭH3, а также N2H4 (гидразин), HN3, P2H4 (дифосфан). РH3 – ядовитый газ, плохо растворимый в воде. NH3 – не ядовит и хорошо растворим в воде. NH3 получают синтезом из простых веществ, а в лаборатории при реакции хлорида аммония с известью. РH3 – взаимодействием белого фосфора с концентрированным раствором щелочи. Эти вещества – сильные восстановители. Для NH3 характерны реакции присоединения за счет донорно-акцепторного взаимодействия. ЭH3 с ильными кислотами образуют соли аммония и фосфония соответственно. Для азота известна все оксиды отвечающие СО от +1 до +5, для фосфора – степеням окисления +3 и +5. Синтезом из простых веществ при очень высоких температурах можно получить только NО, остальные оксиды азота получают косвенным путем. Р4О6 и Р4О10 можно получить при взаимодействии простых веществ. Все оксиды азота, кроме NО термически неустойчивы. N2О и NО с водой не реагируют, NО2 при растворении в воде диспропорционирует, аналогично протекает реакция со щелочами. Оксиды азота (3, 5) и фосфора (3, 5) при растворении в воде образуют соответствующие кислоты. Кислотный характер оксидов выражен тем сильнее, чем меньше атомный номер элемента и выше его СО: N2О5 – наиболее кислотный оксид. Все оксиды азота – окислители, N2О5 – сильнейший окислитель. Р4О6 – восстановитель легко окисляется кислородом, серой, галогенами. Для азота и фосфора известны кислоты отвечающие степеням окисления +3 и +5 (для фосфора также +1 и +4). Кислоты азота в лаборатории получают действием сильных окислителей на нитраты и нитриты. Н3РО3 в лаборатории получают гидролизом хлорида фосфора. Н3РО4 – растворением соответствующего оксида в воде. Кислоты азота – сильные окислители, однако, НNО2 восстанавливается при действии только сильных восстановителей. Кислоты фосфора являются сильными восстановителями, но при действии сильных восстановителей они восстанавливаются. Аммиак и азотная кислота используются для получения азотных удобрений, взрывчатых веществ. Фосфор и его соединения используются в производстве спичек. Роль азота и фосфора очень велика в жизни организмов. Они входят в состав молекул ДНК, с помощью которых осуществляется синтез белков и передача наследственной информации. Фосфор повышает засухо- и морозоустойчивость, способствует накоплению ценных веществ в растении. Удобрениями служат как природные фосфорные руды, так и продукты их химической переработки. Качество фосфорных удобрении характеризуется содержанием усвояемого Р в пересчете на Р2О5.Стандартным считается удобрение, содержащее 18,9% Р2О5. Сырьем для получения служат природные фосфорные руды – фосфориты и апатиты. Фосфоритная мука – это природный измельченный фосфорсодержащий минерал. Производство состоит из операций дробления, сушки и размола фосфоритов. Суперфосфат простой получается разложением природных фосфатов серной кислотой. Простой суперфосфат содержит от 14 до 21% усвояемого Р2О5: 4Ca5(PO4)3F + 14H2SO4 + 13H2O > 6Ca(H2PO4)2·H2O + 14CaSO4·0,5H2O + HF, Ca5(PO4)3F получают из кальцийфторапатита Ca5(PO4)3F·CaF5 Суперфосфат двойной отличается меньшим содержанием балласта и содержит в 2 – 3 раза больше усвояемого Р2О5. Азот входит в состав хлорофилла и белков, являющихся основой живой ткани. Растения усваивают азот, содержащийся в почве в виде солей. Только некоторые растения (бобовые) усваивают азот воздуха. Основными азотными удобрениями являются: нитрат, сульфат, хлорид и фосфат аммония, калиевая, натриевая и кальциевая селитры, мочевина. Нитрат аммония – наиболее эффективное азотное удобрение, содержащее 35% азота. Получают нейтрализацией азотной кислоты сухим аммиаком: HNO3 + NH3 >NH4NO3 Сульфат аммония содержит 21,2% азота и получается поглощением серной кислотой аммиака газа коксовых печей, нейтрализацией серной кислоты синтетическим аммиаком, обработка гипса растворами карбоната аммония: CaSO4 + (NH4)2CO3 > (NH4)2SO4 + CaCO3 Мочевина – наиболее ценное удобрение, содержащее 46,6% азота и получаемое в промышленности из аммиака и углекислого газа: 2NH3 + CO2 > NH2COONH4 > NH2CONH2 + H2O Общая характеристика элементов главной подгруппы четвертой группы периодической системы. Кремний, его физические и химические свойства. Оксид кремния и кремниевая кислота. Соединения кремния в природе. Углерод, его аллотропные формы. Химические свойства углерода. Оксиды углерода, их химические свойства. Угольная кислота, карбонаты и гидрокарбонаты, их свойства. Превращения карбонатов и гидрокарбонатов. Качественная реакция на карбонат-ион. 4А группе относятся элементы углерод, кремний, германий, олово и свинец. Углерод известен с древних времен. Он может быть получен при нагревании древесины без доступа воздуха, при обугливании животных остатков, неполном сгорании органических веществ (сажа). Графит и алмаз встречаются в природе, но в последнее время их в основном получают искусственным путем. Карбин получается синтетически при каталитическом окислении ацетилена и является наиболее стабильной формой углерода. В 1990 г. из сажи, образованной при испарении графита в электрической дуге в атмосфере гелия, была выделена новая форма С – фуллерен С60. Кремний получают восстановлением SiO2 магнием или углеродом в электрической печи. Высокой чистоты Si получают восстановлением SiCl4 цинком или водородом. Остальные элементы – термическое восстановление их оксидных соединений с помощью Н2, С, СО. По химическим и физическим свойствам углерод и образуемые им соединения резко отличаются от др. элементов группы. Будучи типичным неметаллом, С в форме простого вещества, а также в соединениях с кислородом, азотом и серой способен образовывать кратные связи в группировках типа >C=CC=O, O=C=O, –C=N, >C=S. Для Si и Ge соединений с подобными группировками не установлено, Sn и Pb образуют соединения, характерные для металлов. При обычных условиях все аллотропные модификации углерода весьма инертны, др. элементы группы достаточно активны и взаимодействуют со многими веществами. При увеличении температуры химическая активность всех веществ, образованных элементами группы, резко возрастает. В соединениях С и Si проявляют СО –4, +2, +4, Ge, Sn и Pb – +2, +4. Устойчивость соединений в высших СО от Si к Pb уменьшается. Э + Н2 = Э + Г2 = C (CF4); Si, Ge, Sn (ЭГ4); Pb (F4, Cl4, Br2, I2) Э + О2 = ЭO2; Pb (PbO) Э + S = C, Si, Ge, Sn (ЭS2); Ge, Sn, Pb (ЭS) Si + N2 = Si3N4 Э + Р = Si, Ge, Sn (ЭР), ЭР2, ЭР3 Э + С = Э + Ме = карбиды, силициды, сплавы. Э + H2O = Э + H2SO4(k) = C, Si; Ge, Sn (Э(SO4)2); Pb(HSO4)2 Э + H2SO4(p) = C, Si, Ge; ЭSO4 (Pb пассивируется) Э + NaOH = C, Ge; Na2SiO3; Sn, Pb (Na2[Э(OH)4]) Э + HNO3(k) = Si; C (CO2); Ge, Sn (xЭO2·yH2O) Э + HNO3(p) = C, Si, Ge; Sn, Pb (Э(NO3)2) Э + HCl = C, Si, Ge; Sn, Pb (ЭCl2), (Pb пассивируется). Наиболее важными соединениями углерода является СН4 и СО2. СН4 является химически инертным газом. Огромные его количества находятся в природе в виде природного газа. Он широко используется в различных органических синтезах, а также в быту. СО2 представляет собой газ. Он проявляет кислотные свойства, являясь ангидридом угольной кислоты. Он используется в качестве восстановителя, в пищевой промышленности для газирования различных напитков, «сухой лед». Также большое практическое значение имеют соли не выделенной в свободном состоянии угольной кислоты Н2СО3. Из соединений кремния очень важен оксид SiO2. Это кислотный оксид. Он используется как восстановитель, а также в стекольной и цементной промышленности. В свободном виде кремний в природе не встречается, а только в соединениях, важнейшим из которых является кремнезем SiO2. Кремний также входит в состав полевого шпата и каолина. Кремнезем является главным сырьем для производства стекла, цемента и керамики. Стекло получают из смеси песка SiO2, соды Na2CO3 и известняка CaCO3, которую нагревают до 1500°С. При этом протекают реакции: Na2CO3 + SiO2 = Na2SiO3 + CO2; CaCO3 + SiO2 = CaSiO3 +CO2. Затем силикаты натрия и калия сплавляют с песком и получают стекло Na2O·CaO·6SiO2. Если же вместо соды брать поташ К2CO3, то образуется тугоплавкое стекло К2O·CaO·6SiO2. Чтобы придать стеклу нужную окраску, в него добавляют соответствующие оксиды металлов: оксиды железа придают стеклу зеленый цвет, кобальта – синий, меди – голубой, серебра – желтый и т.д. Если в состав стекла входит оксид свинца, то получают хрусталь – ценное стекло, обладающее большой лучепреломляющей способностью. Хрусталь хорошо шлифуется, после чего приобретает сильный блеск. Цемент получают из известняка и глины. При этом используют и мергель. Эту смесь обжигают в специальных печах и полученную спекшуюся массу размалывают. Он широко используется в строительстве как вяжущий материал, который при смешивании с водой затвердевает. Условно различают два типа цемента по принципу их «свертывания» - обычный цемент и портландский цемент. Процесс «схватывания» обычного цемента, состоящего из силиката кальция, происходит вследствие образования карбоната кальция за счет углекислого газа воздуха: CaO·SiO2 + CO2 + H2O = CaCO3 + H2SiO3. При «схватывании» портландского цемента углекислота не участвует в процессе, а происходит гидролиз силикатов с последующим образованием нерастворимых кристаллогидратов: Ca3SiO5 + H2O = Ca2SiO4 + Ca(OH)2; Ca2SiO4 + 4H2O = Ca2SiO4·4H2O. Теория химического строения органических веществ. Зависимость свойств органических веществ от химического строения. Изомерия. Электронная природа химической связи в молекулах органических соединений, типы разрыва связи, понятие о свободных радикалах. Создателем теории химического строения был великий русский химик А.М.Бутлеров. Основные положения своей теории он сформулировал в 1858-1861 г.г. Некоторая трудность для нас заключается в том, что создатель теории строения не формулировал пункт за пунктом положения своей теории в одном месте: они пронизывают все научное творчество самого Бутлерова и его учеников. 1. Атомы в органических молекулах связаны друг с другом в определенном порядке химическими силами. Этот порядок Бутлеров и называл химическим строением. Во времена Бутлерова лишь в общих словах называли эти силы «силами валентности»: в наше время выяснено, что силы валентности имеют электронную природу. 2. Строение можно изучить экспериментально, используя химические методы – анализ и синтез. В наше время при установлении строения широко используют также физические методы – разные виды оптической спектроскопии, рентгенографию, электронографию, определение дипольных моментов. Физические методы, в первую очередь рентгенография и электронография, позволяют определить реальное положение каждого атома в молекуле, получать как бы его фотографию. Это расположение согласуется с найденным чисто химическим путем. Поэтому мы чаще говорим просто о строении молекул, опуская прилагательное «химическое», которое обязательно употреблял Бутлеров. 3. Формулы строения выражают порядок химической связи атомов. В формулах строения (структурных формулах) символы элементов соединяют черточками, условно изображающими химическую связь, например: Структурные формулы в развернутой записи (т.е. с обозначением каждого атома и каждой связи) уже при небольшом усложнении молекулы становится трудно читаемыми. Поэтому с самого начала необходимо привыкнуть к структурным формулам в сокращенной записи, например: или Как видно из приведенных примеров, при сокращенной записи рядом с атомом углерода помещают непосредственно связанные с ним атомы и группы, затем ставят черточку и после нее переходят к другому атому углерода, со стоящими при нем заместителями. Чтобы еще более сократить запись, иногда совсем опускают черточки: например, СН3СН(ОН)СН3. При построении структурных формул органических соединений необходимо учитывать найденную опытным путем валентность элементов-органогенов. Так, валентность углерода 4, водорода 1, кислорода 2, галогенов 1. Азот, сера и фосфор могут находиться в разных валентных состояниях. 4. Каждое вещество имеет одну определенную формулу строения, отражающую порядок химической связи атомов в реально существующей молекуле. Это положение глубоко материалистично, философски правильно: в основе лежит реально существующий в природе объект – молекула, и структурная формула должна возможно точнее отразить этот объект. Выполнению этого требования подчинены все современные «усовершенствования» в написании формул органических веществ – введение в них обозначений электронных пар, стрелок, пунктиров, знаков заряда. Все это улучшает соответствие между формулой и реальной молекулой, т.е. отвечает принципам теории строения. 5. Связанные в молекуле атомы оказывают друг на друга взаимное влияние: свойство каждого атома в составе молекулы зависит не только от его собственной природы, но и от окружения, в котором этот атом находится. С взаимным влиянием атомов мы постоянно встречались во всем курсе органической химии. Пока ограничимся простейшим примером: и в молекуле воды, и в молекуле хлористого водорода имеется атом водорода, но сколь различны его свойства в обоих веществах! 6. Физические и химические свойства органических соединений определяются составом и строением их молекул. Во времена Бутлерова можно было судить лишь о химическом строении – порядке химической связи атомов. В настоящее время имеется возможность определять пространственное строение; определять распределение электрических зарядов – электронное строение. Все три особенности строения важны при рассмотрении свойств органических соединений. Теория химического строения позволила понять природу изомерии: молекулы структурных изомеров имеют одинаковый состав, но различаются порядком связи атомов. Например, формула С2Н6О отвечает двум различным веществам: диметиловому эфиру и этиловому спирту. Бутлеров не ограничился лишь теоретическим объяснении изомерии на основе теории строения. Он провел и ряд экспериментальных работ, подтвердив предсказания теории получением изобутана и третичного бутилового спирта. Гомологический ряд предельных углеводородов (алканов), их электронное и пространственное строение, spі-гибридизация. Номенклатура алканов. Физические и химические свойства алканов (реакции галогенирования и окисления). Представления о механизме цепных реакций с участием свободных радикалов. Метан, его использование. Алканы являются углеводородами, наиболее богатыми водородом, они насыщены им до предела. Отсюда название – насыщенные или предельные углеводороды. Их также называют парафинами. Общая черта в строении алканов и циклоалканов – простая или одинарная связь между атомами углерода. на образование этой связи затрачивается одна пара электронов, причем максимальное перекрывание орбиталей находится на линии, соединяющей центры атомов. Такую связь называют ?-связью, а электроны, образующие её – ?- электронами. Распределение электронной плотности ?- связи симметрично относительно оси, проходящей через центры связанных атомов. В молекулах насыщенных углеводородов атомы углерода находятся в состоянии spі- гибридизации и каждый из них образует четыре ?-связи с углеродом или водородом. Состояние spі-гибридизации характеризуется тетраэдрической конфигурацией, т.е. пространственное направление связей составляет 109є28’. Для алканов характерно структурное изомерия: различие в порядке связей. Для названия алканов используется рациональное номенклатура, но первые четыре представителя имеют тривиальные названия: это метан, этан, пропан, бутан. Первые четыре члена гомологического ряда являются газами, от С5 до С15 – жидкости , с С16 – твёрдые вещества. В гомологическом ряду алканов постепенно повышаются температуры кипения, плавления, а так же относительная плотность. Алканы с разветвлённой цепью кипят при более низких температурах, чем изомеры с нормальной цепью плотности всех алканов меньше единицы. Они практически не растворимы в воде, однако растворимы в эфире и других органических растворителях метан и этан практически лишены запаха, углеводороды С3 – С15 имеют хорошо известный запах бензина или керосина, высшие члены ряда лишены запаха из-за их малой летучести. В химическом отношении алканы малоактивны. Парафины вступают лишь в радикальные реакции замещения, идущие в довольно жёстких условиях. К реакциям присоединения алканы не способны! Галогенирование: CH4 + Cl2 > CH3Cl + Cl2 > CH2Cl2 + Cl2 > CHCl3 + Cl2 > CCl4 (h?) Реакция идет по цепному механизму: a) Инициирование цепи: Cl2 > 2Cl? b) Рост цепи: H3C:H + Cl? > H:Cl + H3C? H3C? +Cl:Cl > H3C:Cl + Cl? c) Обрыв цепи: 2Cl? > Cl2 2H3C? > CH3–CH3 H3C? + Cl? > CH3–Cl 1. Нитрование (р-ция Коновалова): CH3CH2CH3 + HONO2 > CH3CH(NO2)CH3 + H2O (t=140°, p, 10%) 2. Крекинг: нагревание до 400°-600? сообщает молекулам достаточно энергии для того, чтобы произошел гомолитический разрыв С–С связи. При крекинге предельных углеводородов образуются более простые предельные и непредельные углеводороды. Наряду с собственно крекингом при термокаталитической обработке предельных углеводородов идут и другие процессы: * Дегидрирование – отнятие водорода с превращением предельных углеводородов в непредельные. * Ароматизация алканов и циклоалканов с превращением в ароматические углеводороды. * Изомеризация – перестройка углеродого скелета (при действии AlCl3). Метан используется в основном в качестве дешевого топлива. При горении он дает почти бесцветное пламя. Из метана получают ценные химические продукты: метанол, синтез-газ, формальдегид, ацетилен, различные хлорпроизводные. Этан используется при синтезе этилена. Пропан в смеси с бутаном используется в качестве топлива. Средние члены гомологического ряда используют как горючее для двигателей (бензин, керосин), а также в качестве растворителей. Высшие алканы – топливо для дизельных двигателей, смазочные Страницы: 1, 2, 3, 4, 5, 6, 7, 8 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |