бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Взаимодействие низкомолекуляных соединений с мембранами

p align="left">Свои преимущества дает связывание фосфолипидов с Мп2 +, поскольку этот парамагнитный ион изменяет спектр 31Р-ЯМР. Эти изменения зависят от локальной концентрации Мп2+ и, следовательно, могут использоваться для измерения поверхностного потенциала.

С поверхностью кислых бислоев прочно связываются также поликатионы, например поли- или гентамицин.

Дзета-потенциал и электрокинетические явления

Если заряженные везикулы поместить в электрическое поле, то они будут перемещаться по направлению к электроду, заряд которого противоположен по знаку заряду везикул. Электрофоретиче-ская подвижность везикул определяется так называемым дзета-потеициалом, который равен электрическому потенциалу между объемом раствора и так называемой плоскостью Гельмгольца, параллельной плоскости мембраны. Эта плоскость отделяет плотную часть двойного электрического слоя, которая перемещается в электрическом поле вместе с мембраной и находится на расстоянии около 2 А от заряженной поверхности везикулы. Таким образом, величина дзета-потенциала меньше, чем величина поверхностного потенциала, и связана с поверхностным потенциалом соотношением, определяемым теорией Гюи---Чапмена. Измерение дзета-потенциала лежит в основе одного из стандартных методов оценки поверхностного потенциала и может использоваться для изучения связывания ионов с поверхностью фосфолипидных везнкул. На электрофоретическую подвижность влияет также наличие выступающих над поверхностью бислоя заряженных нели-пидных мембранных компонентов, например белков или ганглиози-дов, и с помощью электрокинетических методов можно получить определенную информацию о распределении зарядов вблизи поверхности везикул.

Связывание гидрофобных ионов и мембранных зондов

Наличие поверхностного потенциала может повлиять на связывание с поверхностью мембраны гидрофобных ионов и амфифиль-ных мембранных зондов. Это позволяет использовать некоторые зонды в качестве индикаторов поверхностного потенциала. На рис. 7.9 приведены структурные формулы некоторых зондов. Для всех этих соединений интенсивность спектрального сигнала можно соотнести с количеством связанного с мембраной зонда и, следовательно, с величиной поверхностного потенциала. Такие зонды применяли для изучения многих заряженных фосфолипидных везикул

Исследование с их помощью биомембран более проблематично, поскольку спектральные характеристики зонда могут зависеть не только от поверхностного потенциала, но и от рН или трансмембранного потенциала, что сильно затрудняет интерпретацию наблюдаемых спектральных изменений. В качестве примера можно привести связывание с митохондриями АНС и изменение спектральных характеристик нейтрального красного при связывании с субмитохондриальными частицами.

На рис. 7.10, А представлен профиль электрического потенциала для мембраны, обе поверхности которой отрицательно заряжены. При наличии на мембране поверхностного потенциала увеличивается концентрация в этой мембране таких гидрофобных катионов, как ТФФ+ или комплекс К +-валиномицин. Это связано с тем, что локальная концентрация ионов вблизи поверхности мембраны больше, чем их концентрация в объеме. Напомним, что коэффициент проницаемости может быть представлен в виде произведения коэффициента распределения /3 на константу скорости перемещения иона через мембрану к, поэтому из-за большой величины /3 проницаемость отрицательно заряженной мембраны для гидрофобных катионов будет выше, чем незаряженной. Зависимость проводимости мембраны от поверхностного заряда удовлетворительно описывается уравнением Гюи--Чапмена для поверхностного потенциала.

Заметим, что потенциал внутренних диполей может влиять как на связывание гидрофобных ионов с поверхностью бислоя, так и на константы скорости трансмембранного транспорта, в то время как эффект симметричного поверхностного потенциала на проницаемость обусловлен исключительно его влиянием на коэффициент распределения. В случае асимметричного распределения поверхностных зарядов ситуация усложняется. Подобное асимметричное распределение липидов -- явление отнюдь не редкое. В этом случае существующий на мембране градиент потенциала будет затруднять перенос катионов из водной фазы 1 в фазу 2 и облегчать перенос катионов в противоположном направлении.

4. Трансмембранный потенциал

Трансмембранный потенциал по определению есть разность электрических потенциалов между двумя водными фазами, разделенными мембраной. Связь между трансмембранным потенциалом и поверхностными потенциалами *i и ¦г графически представлена на рис. 7.10, А Из схемы видно, что разность потенциалов между двумя поверхностями мембраны ДФ может отличаться от Д* из-за асимметричного распределения заряда между двумя поверхностями бислоя. Любая находящаяся внутри мембраны заряженная группа будет перемещаться в поле с потенциалом ДФ. Д* называют также потенциалом покоя, и именно эту величину, если удается, измеряют парой электродов.

Создать трансмембранный потенциал можно несколькими способами. Схематически они изображены на рис. 7.11.

1. Равновесные условия. Если мембрана проницаема для какого-то определенного иона, например Na +, и непроницаема для других, то на ней может возникнуть диффузионный потенциал, пропорциональный логарифму отношения концентраций проникающего иона по одну и другую стороны мембраны. Диффузия иона через мембрану сопровождается трансмембранным разделением зарядов, и создаваемая при этом разность потенциалов препятствует дальнейшей диффузии. Заряд, который нужно переместить через мембрану для создания на ней данного значения Aif, можно вычислить исходя из емкости мембраны. Для создания Д* = 100 мВ нужно перенести примерно один заряд на 250 молекул фосфолипида. Ясно, что поверхностная плотность заряда при этом изменится крайне незначительно.

В равновесии Д* определяется уравнением Нернста:

Это же уравнение следует использовать в случае переноса иона с валентностью Z. Проницаемость биомембран для ионов связана с работой специфических ионных каналов. Ее можно искусственно увеличить с помощью специфических переносчиков ионов или ионофоров, например К + -вали-номицина.

Стационарный диффузионный ионный ток. Если мембрана проницаема дял нескольких ионов, то все они будут перемещаться через нее. При этом в стационарных условиях из-за различий в коэффициентах проницаемости для разных ионов может возникнуть трансмембранная разность потенциалов. Иными словами, разделение зарядов на мембране в такой ситуации будет связано с тем, что одни ионы диффундируют через мембрану быстрее других. Уравнение, описывающее данную ситуацию, называется уравнением Гольдмана--Ходжкина--Каца и для случая двух ионов имеет следующий вид:

Перемещение ионов будет продолжаться до тех пор, пока не установится равновесие.

Активный перенос ионов. Трансмембранное разделение зарядов может происходить и с помощью процессов активного транспорта. Многие ферменты катализируют реакции, сопряженные с векторным переносом зарядов через бислой. В качестве примеров можно привести разнообразные АТР-зависимые ионные насосы, например Са2 + -АТРазу или цитохром с-оксидазу, представляющую собой протонный насос. Здесь мы отметим лишь, что катализируемые этими ферментами реакции являются электрогенными, т. е. сопровождаются переносом зарядов через бислой. Очевидно, в такой системе должен существовать какой-то трансмембранный нейтрализующий ионный поток. В системе, представленной на рис. 7.11, таким потоком является пассивный контртранспорт ионов CI ~, возникающий при работе протонного насоса. Как и в случае пассивных ионных потоков, скорость потока противоионов будет меньше, чем скорость активного процесса, и в результате суммарный поток ионов через бислой не будет электронейтральным и на мембране возникнет разность потенциалов №. Если проницаемость бислоя для нейтрализующих ионов сделать достаточно большой, то разделения зарядов уже не будет. На этом принципе основано использование ионофоров для устранения трансмембранного электрического потенциала, создаваемого как на биологических мембранах, так и в модельных системах.

4.1. ИЗМЕРЕНИЕ ТРАНСМЕМБРАННОГО ПОТЕНЦИАЛА

Величину трансмембранного потенциала лучше всего измерять с помощью двух электродов, помещенных по разные стороны мембраны. Однако этот способ применим лишь для плоских модельных мембранных систем и некоторых крупных клеток. Обычно же приходится измерять потенциал на мембране либо протеоли-посом, либо клеток или органелл, например митохондрий или хло-ропластов. Для этих случаев разработано несколько методов.

Распределение ионов в соответствии с уравнением Нернста. В систему добавляют ион, способный проникать через мембрану, и он перераспределяется между внешней средой и внутренним объемом в соответствии с уравнением Нернста. На этом принципе основано использование в качестве молекулярных зондов таких гидрофобных ионов, как ТФФ+ или 86кЬ-валиномицин. Чтобы определить трансмембранный потенциал, нужно знать концентрацию иона внутри везикулы, органеллы или клетки, что нередко превращается в серьезную проблему. Ошибки в измерении Д* могут, в частности, возникнуть, если большие количества зонда связываются с мембранами клетки или если неправильно определен внутренний объем.

Спин-меченные ЭПР-зонды. Для этой цели используют несколько зондов -- гидрофобных ионов, к которым ковалентно пришита парамагнитная нитроксильная группа. Концентрацию зонда, связанного с мембраной, легко определить из спектра ЭПР; при образовании на мембране потенциала зонд перераспределяется между фазами, и по изменению его концентрации в мембране можно оценить величину Д*. Изменение концентрации мембраносвязанного зонда обусловлено тем, что для внутривезику-лярного пространства отношение площади поверхности к объему гораздо больше, чем для внешнего раствора.

Оптические молекулярные зонды. Спектральные характеристики многих оптических зондов зависят от трансмембранного потенциала. Из наиболее распространенных назовем флуоресцентные производные мероцианина, оксонола и цианиновые красители. Все эти соединения связываются с мембраной, и, по-видимому, в основе их реакции на изменения трансмембранного потенциала может лежать несколько механизмов. Чаще всего взаимодействие электрического диполя, каким является зонд, с электрическим полем приводит к изменению ориентации диполя в бислое. В ряде случаев изменение степени агрегации зонда в бислое влечет за собой изменение квантового выхода флуоресценции. Большинство зондов применяют для определения трансмембранного потенциала, имеющего знак минус внутри везикулы, однако некоторые красители, например оксонолы, используются при обратной полярности потенциала.

К зондам другого типа, спектр поглощения которых чувствителен к трансмембранному потенциалу, относятся соединения стирольной природы, образующие в мембране конъюгированные структуры. Изменение их спектров поглощения при наложении потенциала обусловлено так называемым явлением электрохро-мизма. Переход молекулы зонда из основного состояния в возбужденное при поглощении кванта света сопровождается перераспределением электронов. На энергию электронного перехода влияет градиент потенциала, вектор которого параллелен направлению этого смещения заряда. Подобные электрохромные изменения спектра наблюдаются также для природных пигментов фотосинтетических мембран -- каротиноидов. Преимущество зондов этого типа состоит в том, что соответствующие реакции происходят очень быстро и не зависят от степени агрегации или распределения зонда. Все эти свойства делают такие зонды особенно полезными для быстрых кинетических измерений.

4.2 КОНЦЕПЦИЯ ЭНЕРГИЗОВАННОЙ МЕМБРАНЫ

Термин «энергизованная мембрана» трактуется обычно довольно широко, но в действительности он означает лишь, что поток ионов через бислой может использоваться для совершения работы. Чаще всего ионный поток создают протоны, и разность электрохимических потенциалов протонов между двумя разделенными бислоем фазами называется протондвижущей силой.

-- разность электрохимических потенциалов протонов, выраженная в Дж/моль; частное от деления этой величины на постоянную Фарадея будет иметь размерность мВ.

А* = относительно наружного раствора,

ДрН = относительно наружного раствора.

При 30 °С

Протондвижущая сила является мерой изменения свободной энергии при переносе протонов с одной стороны мембраны на другую. В митохондриях и фотосинтетических системах за счет протондвижущей силы происходит синтез АТР, но она может использоваться и системами транспорта растворенных веществ. Все сказанное выше детально рассматривается в рамках хемиосмотической теории.

Для нахождения Дн, нужно знать как Д*, так и ДрН. Методы определения Д* мы обсудили выше. ДрН обычно оценивают из данных по распределению по обе стороны мембраны слабых кислот или оснований. Их нейтральные формы проникают через липидный бислой, а непроникающие заряженные формы накапливаются в зависимости от рН с той или другой стороны мембраны. Можно использовать для этой цели как радиоактивные производные, так и оптические зонды. Один из наиболее часто используемых для измерения ДрН зондов -- 9-аминоакридин -- аккумулируется внутри везикул с кислым содержимым, что ведет к тушению флуоресценции зонда.

5. Проницаемость липидных бислойных мембран для ионов

Как мы уже говорили, бислой создает весьма высокий энергетический барьер для ионов металлов. Коэффициент проницаемости однослойных везикул для Na+ составляет всего 10" 12--Ю-14 см/с, но даже столь малая величина на порядок выше скорости, предсказываемой исходя из модели растворения--диффузии, если воспользоваться уравнением Борна для оценки энергии, необходимой для перемещения иона из водной фазы в центр мембраны. Механизм переноса ионов через липидный бислой пока неясен, но в литературе обсуждается несколько конкурирующих теорий, в основе которых лежит предположение о существовании дефектов упаковки молекул фосфолипидов в бислое. Постулируется, что эти дефекты возникают спонтанно, подобно флуктуирующим полостям или кинкам, либо формируются на границе раздела сосуществующих в мембране жидкокристаллической фазы и фазы геля. Ионная проницаемость в общем случае максимальна при температуре фазового перехода гель -- жидкий кристалл, но это не так для воды и протонов. Следует напомнить, что стационарный поток ионов через бислой должен быть электронейтральным, т. е. для поддержания нейтральности поток одних ионов должен быть сопряжен с потоком других ионов.

Как бы то ни было, ясно, что бислой представляет собой труднопреодолимый барьер для простых анионов и катионов. Однако, как уже говорилось, ионы большего радиуса из-за уменьшения энергии Борна будут легко проникать через мембрану. Довольно легко могут пересекать бислой и гидрофобные ионы.

5.1 ПРОНИЦАЕМОСТЬ ДЛЯ ПРОТОНОВ

Как показывают измерения на модельных мембранах, проницаемость липидного бислоя для протонов исключительно высока. Экспериментально отличить проницаемость для протона от проницаемости для гидроксила довольно трудно, поэтому в литературе ее обозначают Н + /ОН". В дальнейшем эту проницаемость мы будем для простоты называть протонной. Приводимые в литературе значения коэффициента проницаемости для протона варьируют в довольно широких пределах, обычно от Ю-4 до 10 8 см/с. Столь значительный разброс объясняют экспериментальными различиями в размерах везикул, в величине создаваемого трансмембранного градиента рН, в степени ненасыщенности липидов. Ясно тем не менее, что проницаемость для протона по крайней мере в 106 раз выше, чем для других простых ионов, причем это относится как к биомембранам, так и к модельным системам.

Приведенные данные однозначно указывают на существование специального механизма протонной проницаемости. Это, в частности, подтверждает тот факт, что скорость транспорта протонов не определяется простым электростатическим барьером в мембране. Природа этого явления неизвестна. Согласно одной из моделей, в мембране имеются временные пересекающие всю толщу бислоя цепочки из молекул воды, соединенных водородными связями; по этим цепочкам по эстафетному механизму и осуществляется перенос протонов. Однако прямых даннах о существовании таких цепочек воды пока нет. В других работах постулируется, что аномально высокая проводимость фосфолипидных бислоев для протонов обусловлена в основном присутствием в мембране небольших количеств слабых кислот, например свободных жирных кислот, которые при физиологических рН выступают в роли переносчиков протонов. Однако расчеты показывают, что всю аномально большую протонную проводимость липосом эта гипотеза объяснить не может.

Было показано также, что протоны способны быстро диффундировать вдоль границы раздела мембрана--раствор и протонировать анионные формы адсорбированных на поверхности мембраны слабых кислот. При этом околоповерхностный барьер для быстрого установления равновесия по протонам между наружным раствором и протонированными группами на поверхности мембраны отсутствует.

Поскольку перенос протонов через бислой является ключевым процессом для большинства биоэнергетических систем, вопрос о механизме диффузионной проницаемости мембраны для протонов представляет особый интерес. В экспериментальном плане протонная проводимость имеет большое значение при изучении реконструированных в фосфолипидные везикулы протонпереносящих белков. Исследования показывают, что встраивание белков в такие системы почти не влияет на протонную проводимость, однако важным фактором, способным изменить пассивную проницаемость мембраны для протонов, могут служить противоионы и величина трансмембранного потенциала.

Другой важный для биоэнергетики вопрос заключается в том, каким образом происходит диффузия протона из одного места в другое на поверхности мембраны. Например, изображенный на рис. 6.5 протонный цикл предполагает диффузию протонов от про-тонпереносящих ферментов к АТР-синтазам. Весь вопрос в том, устанавливается ли равновесие между этими протонами и наружным раствором или существует некий локализованный путь переноса протонов вдоль поверхности или внутри мембраны. Как уже упоминалось, отсутствие околомембранного барьера для быстрого уравновешивания протона между локализованными на поверхности бислоя протолитическими группами и раствором доказано экспериментально. Однако в серии изящных исследований было показано, что латеральная диффузия протонов вдоль поверхности фос-фолипидного монослоя может осуществляться в 20 раз быстрее, чем диффузия через объем. Предполагается, что диффузия идет посредством эстафетной передачи вдоль двумерной сетки водородных связей, образованных полярными головками фосфолипидов и молекулами воды на поверхности мембраны. Биологическую значимость обнаруженного явления, однако, еще предстоит выяснить, а с выводами согласны далеко не все исследователи.

5.2 ИОНОФОРЫ

Ионофоры -- это довольно разнородная группа соединений, увеличивающих проницаемость мембран для ионов. Один ионофоры, например грамицидин А и аламетицин, формируют в бислое каналы, другие образуют стехиометрические комплексы с катионами и тем самым облегчают транспорт этих ионов через липидный бислой. Ионофоры являются весьма полезными инструментами в мембранных исследованиях, особенно при изучении биоэнергетических или иных зависимых от ионного градиента систем. Поскольку такие ионофорно-катионные комплексы могут проявлять довольно высокую специфичность к определенным ионам, с их помощью можно избирательно манипулировать ионными градиентами и электрическим потенциалом на мембране. Некоторые комплексы ионофора и катиона не заряжены, и катион переносится в нейтрализованной форме. Другие комплексы заряжены и диффундируют через бислой подобно уже обсуждавшимся гидрофобным ионам. Ниже кратко охарактеризованы некоторые наиболее часто используемые ионофоры.

СССР и близкий к нему FCCP представляют собой слабые кислоты. Протонированная форма электронейтральна и, как показано, легко проникает через мембрану, в то время как проницаемость депротонированной формы составляет -- 1 <Уо от проницаемости формы нейтральной. Растворимость анионных форм этих и других протонофоров в гидрофобной области бислоя обусловливается несколькими причинами. Отрицательный заряд этих молекул делокализован, а благодаря большому ионному радиусу уменьшается энергия Борна. Кроме того, потенциал диполей, ориентированных положительным зарядом внутрь бислоя, стабилизирует анионы в мембране. И наконец, ионофор в мембране стабилизируют гидрофобные группы молекулы.

СССР, FCCP и другие слабые кислоты эффективно увеличивают проницаемость мембраны для протонов, что позволяет достичь электрохимически равновесного распределения протонов по обе стороны бислоя.

Валиномицин

Это циклодепсипептид, образующий с одновалентными катионами комплекс со стехиометрией 1:1. Структура комплекса напоминает ячейку, в центре которой находится ион калия, стабилизированный взаимодействием с карбонила-ми эфирных групп. Комплекс К +-валиномицин является гидрофобным ионом и с легкостью проникает через бислой. С помощью этого ионофора можно создавать калиевый диффузионный потенциал на мембране везикул, концентрация К + в которых отличается от концентрации снаружи. В системе, где трансмембранный потенциал создается с помощью какого-либо активного процесса, К+-валиномицин будет устранять электрическую составляющую не влияя непосредственно на величину ДрН.

Нигерицин и моненсин

Это полиэфиры, имеющие одну отрицательно заряженную карбоксильную группу. Как и валиномицин, они образуют ком-

плексы с одновалентными катионами в стехиометрии 1:1, но эти комплексы электронейтральны. Нигерицин селективно связывает К +, а моненсин -- Na+. Эти ионофоры также могут с успехом проникать через бислой в нейтральной протонированной форме, поэтому их используют для ускорения обмена Н+ на Na + или Н + на К + через мембрану. Добавление рассматриваемых ионофоров к везикулам приводит к выравниванию градиентов Н+ и Na*. Чаще всего их применяют для рассеивания АрН на мембране. Поскольку при суммарной реакции обмена сохраняется электронейтральность, на Д* это прямым образом не сказывается.

А23187

Этот катионный переносчик содержит заряженную карбоксильную группу и с высокой избирательностью связывает двухвалентные катионы. Обычно А23187 используют как Са2 +-ионофор. Вероятно, при своей работе этот ионофор образует растворимый в бислое нейтральный комплекс, состоящий из двух молекул А23187 и одной молекулы Са2+; существование таких комплексов со стехиометрией 2:1 доказано экспериментально.

Резюме

Основная функция любой биологической мембраны состоит в создании барьера с селективной проницаемостью между разделяемыми ею водными компартментами. Тонкий гидрофобный центральный слой в мембране является очень эффективным барьером для неорганических ионов, но он в той или иной степени проницаем для неполярных веществ. Скорость проникновения неэлектролитов через бислой зависит от растворимости данного вещества в бислое, определяемой исходя из данных о коэффициенте его распределения между водой и органическими растворителями. Проницаемость модельных мембран для воды неплохо согласуется с растворимостью воды в органических растворителях, однако через некоторые биологические мембраны вода может проникать также по трансмембранным каналам белковой природы.

Липидный бислой является довольно хорошим барьером для неорганических ионов, однако проницаемость модельных и биологических мембран для протонов по не совсем понятным причинам необычайно высока.

Органические ионы или органические хелатные комплексы, содержащие неорганические ионы, могут растворяться в углеводородной области бислоя благодаря своим гидрофобным свойствам и большим размерам. К молекулам такого типа относятся и ио-нофоры.

Электрические свойства биологических мембран довольно хорошо изучены. Проницаемость биологических мембран для неорганических ионов практически полностью обусловлена работой трансмембранных ионных каналов белковой природы. Образующийся при разделении зарядов трансмембранный потенциал связан с электрической емкостью мембраны, которая практически одинакова для модельных липидных бислоев и биологических мембран. Существование зарядов на поверхности мембраны создает дополнительный поверхностный потенциал, который может весьма существенным образом изменять концентрацию любого заряженного соединения в непосредственной близости от мембраны. Это в свою очередь может сказаться на каталитических свойствах мембраносвя-занных ферментов.

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.