|
Принципы биохимического исследованияp align="left">Одним из способов изучения путей превращения введенного соединения in vivo является перфузия органов (например, почек или печени), при которой соединение вводят с помощью тонкой полой иглы в артерию, несущую кровь к данному органу, а затем анализируют пробы крови, взятые из соответствующей вены животного.В Англии существуют инструкции, ограничивающие применение живых позвоночных животных для исследовательских целей; контроль за выполнением этих инструкций осуществляется специальными комиссиями Внутреннего департамента (Министерства внутренних дел Великобритании). Эксперименты на живых позвоночных нельзя проводить без особого разрешения министерства, которое должно быть подписано профессором физиологии (или специалистом смежного профиля) и президентом Королевского общества или его заместителем. Для изучения распределения введенного соединения животное спустя некоторое время после инъекции умерщвляют с помощью анестезий, декапитации или цервикальной дислокации. Затем проводят исследования либо трупа животного, либо отдельных органов, которые для этой цели изолируют, выявляют морфологические изменения, происшедшие в них, изучают их составные части. Для получения наглядного представления о распределении введенных мелким лабораторным животным радиоактивных соединений успешно применяется метод авторадиографии препаратов целого организма (разд. 6.2.4). Этот метод позволяет получить данные о распределении и относительном содержании введенного соединения в тканях животного, скорости его выведения и способности проникать сквозь биологические мембраны. Через определенный промежуток времени после введения соединения животное умерщвляют с помощью анестезии и быстро замораживают смесью ацетона с твердым С02 при температуре --78° С или с помощью жидкого азота. Замороженное животное помещают при низкой температуре в водный раствор смолы (аравийская камедь), а после застывания смолы рассекают на соответствующем уровне резцом, прикрепленным к электродрели, или делают секционные срезы с помощью микротома со специальным лезвием из карбида вольфрама. Полученный срез прикладывают к рентгеновской пленке и оставляют на 1--2 нед при низкой температуре, после чего пленку проявляют. Сопоставляя полученную авторадиограмму с цветным снимком среза, изучают распределение и локализацию введенного животному изотопа в различных его органах и тканях. Типичная авторадиограмма изображена на рис. 1.3. 4. Изотонические солевые растворы При проведении экспериментов на органах животных, срезах растительных и животных тканей, гомогенатах и клеточных органеллах необходимо, чтобы среда для суспендирования имела не только определенный рН, но и заданный ионный состав. Среда должна быть изотонической, т. е. осмотическое давление в ней должно совпадать с осмотическим давлением внутри клетки или клеточной органеллы, чтобы их метаболическая целостность не нарушалась. Кроме того, если, например, изучают рост клеток, среда для суспендирования должна содержать все необходимые основные питательные вещества. Это требование нужно особенно тщательно выполнять при изучении культур клеток и тканей, особенно культур животных клеток. Существует целый ряд физиологических солевых растворов, многие из которых являются разновидностями одного из первых -- раствора Рингера. К ним относятся растворы Тайрода, Янга, Лока, Менга и Да Жалона. Наиболее часто применяются фосфатный и бикарбонатный растворы Кребса--Рингера. По своему ионному составу бикарбонатный солевой раствор близок к сыворотке крови млекопитающих. Фосфатный раствор Кребса--Рингера не является физиологическим, но может с успехом применяться для изучения срезов и гомогенатов тканей в тех случаях, когда поглощение кислорода измеряют манометрическими методами (разд. 8.6.2). Большинство этих солевых растворов содержат в различных количествах NaCl, КС1, MgS04, СаС12, NaHCOs и КН2Р04; некоторые растворы насыщены смесью газов -- кислорода и углекислого газа. Кроме того, в их состав могут входить такие соединения, как глюкоза, пируват, фумарат и оксалоацетат. Для исследования культур животных тканей используются растворы Хэнкса и Гей--Эрля. Выбор того или иного раствора вначале является произвольным и не основывается на объективных данных, поэтому перед его применением необходимо убедиться, что состав его оптимален. И, наконец, при проведении физиологических экспериментов нужно следить за тем, чтобы эффекты, наблюдаемые при изменении рН среды, были вызваны изменениями в концентрации ионов водорода, а не какими-либо другими изменениями буферного раствора. 5. Перфузия изолированных органов Сущность этого метода заключается в том, что изучаемый орган (печень, почку или сердце) изолируют из организма животного и помещают в специальный термостатируемый прибор. Затем к перфузионной жидкости, которая обычно вводится в орган через артерию, добавляют исследуемое соединение и анализируют жидкость, вытекающую из органа через вену, что позволяет проследить за превращениями введенного соединения. Перфузионную жидкость можно пропускать через орган однократно или несколько раз, самотеком или с помощью небольшого насоса. Насос применяют тогда, когда перфузионную жидкость пропускают через орган многократно. В отдельных случаях жидкость прогоняют не при постоянном давлении, а импульсами, что позволяет приблизить условия опыта к ситуации in vivo и имитирует процесс перекачивания крови сердцем. Для проведения перфузии не обязательно полностью изолировать орган; ее можно проводить и на органе вскрытого анестезированного животного. При этом удается сохранить интактными нервные волокна и часть сосудистой системы. Действие какого-либо соединения на ткань или орган (например, гистамина на мышцу) можно изучать по механической ответной реакции изолированной ткани на данное соединение. Исследуемое соединение добавляют к омывающей ткань жидкости; в ответ на это ткань, закрепленная с одного конца, а другим концом связанная с пером самописца, начинает двигаться, и любое движение ткани постоянно регистрируется на самописце. Данный метод позволяет изучать ответную реакцию изолированных органов на введение очень небольших (порядка нескольких нанограмм) количеств активных соединений. Основным недостатком метода перфузии изолированных органов является отсутствие гормонального и нервного контроля; поэтому при экстраполяции всех полученных результатов к ситуации in vivo следует соблюдать осторожность. 6. Приготовление срезов органов и тканей Срезы тканей желательно делать как можно тоньше, чтобы обеспечить свободный доступ кислорода в самые глубокорасположенные слои срезов и полное выведение продуктов распада за счет диффузии. Этим требованиям удовлетворяют срезы толщиной от 0,5 до 5 мм; кроме того, в этом случае соотношение между разрушенными и интактными клетками остается достаточно малым. Исследуемый орган извлекают из организма сразу же после умерщвления животного, чтобы посмертные изменения были минимальными. Срезы делают с помощью лезвия бритвы или микротома, затем переносят в сосуд с подходящей средой суспендирования и изучают их метаболизм и действие введенных соединений на обменные процессы. Тканевые срезы часто исследуют манометрическими методами (разд. 8.6.2); при этом, поскольку срезы бывают недостаточно тонкими, для создания аэробных условий и обеспечения кислородом глубокорасположенных слоев клеток приходится применять газовые смеси, содержащие до 95% кислорода. Недостатком данного метода является то, что внешние слои клеток срезов находятся в среде с токсической концентрацией кислорода. 7. Использование растительного материала Выбор методов при изучении метаболизма у растений определяется в основном степенью организации растения. Одноклеточные и многоклеточные водоросли, например, хорошо растут на простых, чаще всего неорганических питательных средах при соответствующих внешних условиях. Такие водоросли можно рассматривать как интактные организмы; они имеют относительно простое строение и являются удобным экспериментальным материалом для изучения фундаментальных биохимических процессов, которые трудно исследовать на высокоорганизованных растениях. В качестве классического примера можно привести такие растительные организмы, как Scenedesmus и Chlorella, которые используются для изучения фиксации углекислого газа. Эти системы благодаря удобству контроля за их ростом и простоте поставки экзогенных соединений клеткам особенно удобны для изучения действия на обмен веществ таких факторов, как освещение, температура, питание и т. д. На более высоких уровнях организации -- у высших растений-- доставка экзогенных соединений в соответствующий участок внутри растения в значительной степени затруднена. Если растение растет в почве, исследуемое соединение в виде раствора вносят в эту почву, откуда оно затем всасывается корнями. Другой способ состоит в том, что растение извлекают из почвы и корни помещают в раствор исследуемого соединения на определенный период времени. Раствором соединения можно опрыскивать растение или наносить его непосредственно на листья. Для изучения распределения соединения и его метаболитов внутри растительного организма исследуют отдельные его части -- корни, побеги, листья, почки и цветы. Основная трудность, возникающая при изучении метаболизма у растений, заключается в том, что в отличие от тканей животных растительные ткани не содержат достаточно крупных и сложных структур. Отдельные части растения можно изолировать, помещать в соответствующую среду, а затем изучать их метаболизм in vitro. Приготовление срезов, дисков, гомогенатов и выделение клеточных органелл из растительных тканей осуществляют такими же способами, как и из тканей животных. 8. Культуры тканей и клеток Как мы уже говорили, изучение метаболизма на уровне организма или органа связано с целым рядом трудностей. Иногда это обусловлено еще и тем, что некоторые растения содержат очень мало живой ткани, например ткани меристемы, возникают также трудности доставки соединения в определенный участок растения и контроля за ним. Поэтому выращивание тканей и клеток in vitro имеет ряд преимуществ. В соответствующих экспериментальных условиях можно изучать рост, деление и дифференцию клеток, при этом в значительной степени облегчается доставка соединений к клеткам и тканям и изучение их действия. In vitro можно выращивать большие количества той или иной ткани по сравнению с естественным содержанием ее в интактном организме. Широкое использование данного метода в эволюционных, физиологических, общемедицинских и фармакологических исследованиях обусловлено тем, что культивирование клеток и тканей позволяет преодолевать многие физические, физиологические и биохимические ограничения, накладываемые сложным строением организма. Метод позволяет изучать потенциал развития клетки, т.е. способность клетки в пределах, обусловленных генотипом, образовывать при соответствующих химических и физических условиях любой другой тип клетки. Несмотря на то что культуры клеток растительных и животных тканей мало чем отличаются друг от друга, клетки растительных тканей могут размножаться в менее сложных средах, чем клетки тканей животных. Культуры отдельных частей растения, например корня или меристемы, получают, помещая вырезанные части растения в стерильных условиях в питательную среду, поддерживающую их рост и развитие. В таких средах, которые бывают жидкими или полужидкими, можно выращивать также изолированные растительные и животные клетки. Питательные среды имеют довольно сложный химический состав; как правило, они содержат источник углерода (например, сахар), смесь неорганических солей, микроэлементы, витамины и факторы роста. Часто в культуральные среды вносят сложные питательные добавки: к культурам животных клеток добавляют сыворотку крови, а к культурам растительных -- кокосовое молоко. Чтобы обеспечить полную воспроизводимость данных, лучше всего там, где это возможно, пользоваться питательной средой постоянного состава. В подходящей среде в процессе роста и деления клеток образуются группы клеток, на которых и проводят исследование. Если культуру необходимо аэрировать (например, когда она представляет собой жидкую суспензию), коническую колбу или специальный сосуд с суспензией встряхивают или вращают. В тех случаях, когда требуется получить дезагрегированную суспензию, в раствор добавляют определенные ферменты, например трипсин к суспензии животных клеток или пектиназы к суспензии растительных. Оценку клеточного роста на основе подсчета количества клеток и увеличения клеточного объема, позволяющих судить о размере клеток, удобнее проводить не в интактной ткани, а в клеточной суспензии. Соединение, внесенное в культуральную среду, поступает непосредственно в клетки, что позволяет легко проследить за действием этого соединения на рост и обмен веществ в клетке. Применение этого метода для культивирования растительных клеток с удаленной внешней стенкой (культуры протопластов) и для поддержания роста вирусов еще более расширяет границы его использования. Клеточные культуры широко используют в микробиологии для получения в большом количестве водорослей, грибов и бактерий для исследовательских целей. Для выращивания микроорганизмов применяют как жидкие, так и твердые среды; по своему химическому составу они, как правило, менее сложны, чем те, которые применяются для выращивания культур клеток животных и высших растений. Скорость роста микроорганизмов во много раз выше, чем скорость размножения других клеточных культур, поэтому поддерживать стерильность культур растительных и животных клеток чрезвычайно трудно -- любое заражение культуры микробами приводит к быстрому инфицированию выращиваемой культуры. Подобно другим методам in vitro, применение тканевых и клеточных культур ставит перед исследователями проблему экстраполяции полученных результатов к целому организму, особенно в тех случаях, когда при культивировании растительные и животные клетки дифференцируются. 9. Фракционирование клеток Фракционирование клеток состоит из двух последовательных стадий -- гомогенизации и разделения. На стадии гомогенизации структура ткани разрушается и ткань превращается в так называемый гомогенат. На второй стадии -- разделении -- происходит группирование отдельных компонентов гомогената по принципу общности их физических свойств, таких, как размер и плотность. При идеальных условиях выделения внутриклеточные компоненты можно было бы получать в том же виде и количестве, в которых они существуют в интактных клетках, не нарушая таким образом их морфологической структуры и не изменяя их активности. Однако большинство существующих в настоящее время методов фракционирования всем этим требованиям не удовлетворяет, и при выборе того или иного метода часто приходится иметь в виду, что в ходе фракционирования за счет сохранения морфологической структуры клетки может нарушиться ее активность, и наоборот. Выбор ткани для фракционирования определяется конкретными условиями эксперимента и объектом исследования. Ткани и клетки различных органов различаются по составу, хрупкости и плотности,- что в свою очередь определяет выбор того или иного метода выделения. Печень, например, является идеальным объектом для изучения функционирования митохондрий, поскольку именно в клетках печени митохондрии содержатся в особенно больших количествах. Ткань тимуса (зобной железы) чаще других тканей используется для выделения ядер, так как ядра тимоцитов составляют до 50% клеточной массы. Клетки различных тканей обычно гетерогенны по форме и размерам; подобная гетерогенность точно в такой же степени характерна и для выделяемых из гомогенатов тканей субклеточных фракций. В этой связи химический анализ выделенных фракций может дать лишь усредненные данные о составе этих фракций. Различные органы животных отличаются друг от друга и по содержанию в них крови и соединительной ткани: чем больше соединительной ткани содержится в органе, тем хуже ткань поддается гомогенизации и тем труднее поэтому выделить из нее субклеточные компоненты. 9.1 Приготовление гомогенатов тканей и клеток Гомогенизация приводит к потере морфологических и биохимических свойств, характерных для данной ткани. Такая потеря не существенна, если гомогенизация проводится как предварительная стадия выделения из ткани какого-либо химического соединения. Однако в тех случаях, когда изучают метаболические процессы, морфологическая и биохимическая целостность ткани должна быть сохранена в максимальной степени. Целью гомогенизации, которая, к сожалению, по-прежнему остается эмпирическим методом, является разрушение тканей, клеточных стенок и (или) мембран и высвобождение клеточного содержимого. Для этого применяются самые разнообразные методы и приборы, хотя лежащие в их основе принципы не всегда ясны. Лишенная прочной теоретической базы и необходимого арсенала стандартных методов, гомогенизация представляет собой скорее искусство, чем науку. В силу того, что различные ткани в значительной степени отличаются одна от другой как по хрупкости определенных клеточных органелл, так и по устойчивости клеток и тканей к разрушению, при гомогенизации любого биологического материала всякий раз неизбежно возникают специфические проблемы, которые можно разрешить только путем проб и ошибок. В основном гомогенизация применяется как стадия, предшествующая разделению клеточных компонентов, которая дает возможность установить внутриклеточную локализацию метаболических процессов. Гомогенаты успешно используются и при изучении поглощения и метаболизма соединений в тех случаях, когда доставка их в интактные клетки затруднена в силу недостаточной проницаемости мембран. 9.2 Выбор среды суспендирования Объективных критериев для выбора той или иной среды суспендирования при гомогенизации не существует. Некоторые рекомендации можно почерпнуть из литературы, однако окончательный выбор всегда зависит от результатов предварительных опытов с применением различных сред. Обычно для создания в среде необходимого осмотического давления, предохраняющего частицы от набухания и разрыва, применяют сахарозу. Если сахароза затрудняет исследование свойств ферментов, ее заменяют маннитом. Существует целый ряд индивидуальных прописей по сохранению целостности частиц и защите ферментов от инактивации. Рекомендуемые растворы различаются по концентрации сахарозы или присутствию таких веществ, как ЭДТА, глутатион, р-меркаптоэтанол и т. д. Иногда вместо солевых растворов используют неионные среды, так как, например, в гомогенатах печени солевые растворы вызывают агглютинацию полиморфно-ядерных лейкоцитов и органелл. При работе с гомогенатами селезенки, Наоборот, сахароза (0,25 М) обладает более выраженным агглютинирующим действием, чем КС1 (0,2 М). Для выделения ядер и хромосом пользуются лимонной кислотой, которая обладает способностью подавлять активность «нейтральных» дезоксирибонуклеаз. Для выделения ядер применяют растворы глицерина и этиленгликоля, а для выделения пластид из клеток растений -- карбоваксы (полимеры этиленгликоля). Хлоропласты обычно выделяют в средах, содержащих не сахарозу, а маннит и сорбит. Анализ ферментов в растительных экстрактах иногда значительно усложняется в силу того, что в процессе гомогенизации выделяется большое количество фенолов, которые образуют водородные связи с карбонильными группами, участвующими в образовании пептидных связей белков, а это, по-видимому, вызывает инактивацию многих ферментов. Во избежание этого к экстрактам добавляют поливинилпирролидон, образующий с фенолами нерастворимый комплекс, который затем удаляют из экстракта фильтрованием. Для выделения субклеточных органелл можно применять неводные среды. Суспендирующая среда в этом случае представляет собой смесь легкого и тяжелого органических растворителей, например смесь эфира с хлороформом или бензола с четыреххлористым углеродом. Плотность среды можно изменять таким образом, чтобы при последующем центрифугировании исследуемые частицы либо всплывали на поверхность, либо осаждались. «Неводное» фракционирование применяют для выделения хлоропластов и лейкоцитов, а также гранул гемосидерина из селезенки. Недостатками этого метода являются нарушение морфологической структуры некоторых видов ткани и инактивация отдельных ферментов органическими растворигелями. 9.3 Способы разрушения тканей и клеток Для разрушения клеток чаще всего применяют физические методы. Большинство животных клеток разрушается сравнительно легко, однако при разрушении растительных и бактериальных клеток зачастую приходится сталкиваться со значительными трудностями, связанными с наличием клеточных стенок. Физические методы разрушения клеток подразделяются в зависимости от того, происходит ли оно под действием сил трения между клетками и твердыми веществами (растирание клеток с твердыми материалами) или гидродинамически (разрушение клеток в жидких средах). Растирание клеток с твердыми материалами. В современной модификации этот метод состоит в растирании клеток с песком или абразивным порошком в ступке при помощи пестика. В настоящее время благодаря появлению более мягких способов разрушения этот метод применяется для разрушения животных клеток довольно редко, однако им по-прежнему пользуются для разрушения растительных и бактериальных клеток. Желательно, чтобы абразивные частицы были как можно более острыми и имели такой же размер, что и разрушаемые клетки. Недостаток метода заключается в том, что при разрушении клеток может нарушаться структура наиболее крупных органелл, таких, например, как хлоропласты. Хорошие результаты дает продавливание клеток, смешанных с абразивными частицами, через пресс Хьюза. Влажные клетки с абразивными частицами помещают в трубку при температуре около --5°С, а затем однократным ударом по поршню, создающим скачкообразное изменение давления, проталкивают клеточную массу через узкое отверстие диаметром около 0,25 мм. Модификацией этого метода является продавливание клеток при температуре --25°С; роль абразивных частиц выполняют в этом случае кристаллы льда. Чтобы добиться максимального разрушения бактериальных клеток, приходится иногда повышать давление до 5,5-107 Па. Клетки бактерий можно разрушать также и путем механического встряхивания суспензий частиц с абразивным порошком с частотой 300--3000 колебаний в минуту при помощи встряхивателя Микля, в который добавляются мелкие стеклянные бусинки диаметром от 50 до 500 мкм. Однако возникающая при встряхивании сильная вибрация часто вызывает разрушение клеточных органелл. Разрушение клеток в жидких средах. Разрушение клеток, находящихся в суспензии, происходит либо при вращении лопастей или поршня (блендеры), либо при поступательном движении вверх и вниз поршня или шаров (гомогенизаторы). Блендеры, как правило, имеют режущие лопасти, вращающиеся с большой скоростью. Количество и конструкция этих лопастей бывают разными, но все они обычно заострены под прямым углом друг к другу, а форма их обеспечивает хорошее перемешивание содержимого сосуда. Суспензию клеток помещают в специальный стакан, который имеет по всей высоте раструбы и в поперечном сечении выглядит как клеверный лист. Для поддержания низкой температуры в процессе гомогенизации стакан помещают в лед. Благодаря особому расположению лопастей и конструкции стакана в ходе фракционирования возникают гидродинамические силы. Метод достаточно универсален и широко применяется для фракционирования клеток, однако следует иметь в виду, что при быстром вращении лопастей гомогенизаторов возникают некоторые нежелательные эффекты. Большинство гомогенизаторов преставляют собой прибор, состоящий из пестика с ручным (гомогенизаторы Даунса и Тёнбрэка) или механическим (гомогенизатор Поттера--Эльвегёйма) приводом, который вращается или движется вверх и вниз в стеклянном цилиндрическом сосуде. Необходимо следить за тем, чтобы зазор между пестиком и стенками сосуда оставался постоянным, так как скорость разрушения клеток зависит не только от скорости вращения пестика, но и от соотношения между радиусами пестика и сосуда. Сосуд закрепляется неподвижно,- поэтому скорость вращения суспензии изменяется от минимальной у его стенок до максимальной у поверхности пестика; следовательно, чем меньше расстояние между этими поверхностями, тем выше градиент скорости. Возникающие при высоких скоростях силы достаточны для разрушения довольно тонких мембран животных клеток; растительные и бактериальные клетки при этом не разрушаются. Эффективность гомогенизации в значительной степени зависит от наличия в измельчаемом материале сосудистой и соединительной ткани, для удаления которой ткань перед гомогенизацией пропускают через специальную мясорубку с отверстиями диаметром 0,88 мм8. Полиморфоядерные лейкоциты разрушаются более мягкими методами-- при помощи пипетки. Эозинофилы разрушают путем быстрого пропускания под давлением через мелкорешетчатое сито. Разрушение клеток с помощью высокого давления. Этот метод применяется в основном для разрушения микробных клеток. Для этой цели пользуются специальными прессами, например френч-прессом (French Pressure), в котором создается давление до 10,4-107 Па. Суспензию клеток загружают в камеру из нержавеющей стали (рис. 1.4) при закрытом положении игольчатого клапана, посредством которого камера сообщается с внешней средой. Затем камеру переворачивают, открывают клапан и поршнем вытесняют из камеры воздух, после чего клапан снова закрывают, а камеру возвращают в исходное положение и устанавливают на неподвижном основании. С помощью гидравлического пресса создается требуемое давление на поршень; по достижении в камере определенного давления игольчатый клапан немного открывается, давление в камере несколько уменьшается, и в этот момент клетки лопаются. Вытекающую из выходного отверстия камеры клеточную массу собирают при открытом положении игольчатого клапана, поддерживая в камере постоянное давление. К сожалению, неизвестно, какие именно силы возникают в камере и как им противостоят клетки и клеточные компоненты. Разрушение с помощью ультразвука. Клетки можно разрушить также с помощью высокочастотных ультразвуковых колебаний. Механизм такого разрушения окончательно не выяснен, однако установлено, что при обработке клеточных суспензий ультразвуком в среде создается высокочастотное изменение давления. Основным недостатком данного метода является то, что в процессе обработки ультразвуком выделяется значительное количество тепла. Чтобы избежать разогревания, сосуд с суспензией помещают в лед; конструкция сосуда такова, что жидкость непрерывно циркулирует и охлаждается у стенок. Некоторые сосуды помещают в холодильные камеры; однако далеко не всегда удается устранить местное нагревание. Прочие методы. К ним относятся: разрушение клеток методом осмотического шока, переваривание клеточных стенок ферментами, например лизоцимом, и сложными ферментными препаратами, выделенными из улиток и содержащими целлюлазу, хитиназу и липазу. Для разрушения клеток некоторых видов успешно применяют замораживание и оттаивание, автолиз и обработку органическими растворителями, такими, как этилацетат и толуол. Как мы уже говорили, в большинстве случаев разрушение клеток сопровождается выделением тепла. Ввиду того что при высоких температурах многие ферменты инактивируются, все процедуры по разрушению клеток и выделению клеточных органелл следует проводить при пониженных температурах. Для этого все работы проводят в холодных комнатах при температуре около 0°С или охлаждают клеточные суспензии с помощью льда. Следует отметить, что некоторые ферменты неустойчивы к холоду и при охлаждении также теряют свою активность. При гомогенизации разного рода биологических тканей возникает множество частных проблем, которые разрешаются в основном путем проб и ошибок. Достаточную воспроизводимость результатов можно получить лишь при тщательном контроле за такими параметрами, как температура, продолжительность и скорость разрушения клеток, а также применяемое рабочее давление. Идеальным считается такой гомогенат, который легко поддается дальнейшему фракционированию. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |