бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Ответы на вопросы по генетике

Ответы на вопросы по генетике

1. Предмет генетики и ее связь с другими науками

Генетика, как самостоятельная наука выделилась из биологии в 1900 году. Термин генетика введён в 1906 году. Генетика - наука об изменчивости и наследственности. Вет. генетика - наука, изучающ. наследственные аномалии и болезни с наследственным предрасположением, разрабатывающая методы диагностики, генетической профилактики и селекции, животных на устойчивость к болезням. Задачи: 1. Изучение наследственных аномалий. 2. Разработка методов выявления гетерозиготных носителей наследственных аномалий. 3. Контролирование (мониторинг) распространения вредных генов в популяциях. 4. Цитогенетический анализ животных в связи с заболеваниями. 5. Изучение генетики иммунитета. 6. Изучение генетики патогенности и вирулентности микроорганизмов, а также взаимодействие микро - и макроорганизмов. 7. Изучение болезней с наследственным предрасположением. 8. Изучение влияния вредных экологических веществ на наследственный аппарат животных. 9. Создание устойчивых к болезням, с низким генетическим грузом и приспособленных к опред-ным усл-ям среды стад, линий, типов, пород. Методы генетики: 1. Гибридологический анализ основан на использ-нии системы скрещивания в ряде поколений для определения хар-ра наследования признаков и свойств. Гибридологический анализ - основной метод генетики. Генеалогический метод заключается в использовании родословных. Для изучения закономерностей наследования признаков, в том числе наследственных болезней. Этот метод в первую очередь принимается при изучении наследственности чел-ка и медленно плодящихся животных. Цитогенетический метод служит для изучения строения хромосом, их репликации и функционирования, хромосомных перестроек и изменчивости числа хромосом. С помощью цитогенетики выявляют разные болезни и аномалии, связанные с нарушением в строении хромосом и изменение их числа. Популяционно-статический метод применяется при обработке результатов скрещиваний, изучения связи между признаками, анализе генетической стр-ры популяций и т.д. Иммуногенетический метод включают серологические методы, иммуноэлектрофорез и др., кот используют для изучения групп крови, белков и ферментов сыворотки крови тканей. С его помощью можно установить иммунологическую несовместимость, выявить иммунодефициты, мозаицизм близнецов и т.д. Онтогенетический метод используют для анализа действия и проявление генов в онтогенезе при различных условиях среды. Для изучения явлений наследственности и изменчивости используют биохимический, физиологический и другие методы. Практическое значение большое значение имеют теоретические исследования по проблемам инженерии в селекции растений, микроорганизмов и животных, разработке более эффективных методов и средств предупреждения болезней и лечения животных. Фундаментальные открытия в современной генетике реализуются в селекции растений, животных и микроорганизмов. Методы генетической инженерии широко применяются в биотехнологии. В животноводстве методы генетики используют: 1. При выведению линий и пород животных, устойчивость к болезням. 2. Для уточнения происхождения животных. 3. При цитогенетической аттестации производителей. 4. Для изучения влияния экологически вредных веществ на наследственный препарат животных.

2. Этапы развития генетики. Вклад отечественных учёных в развитие генетики

В развитии генетики можно выделить 3 этапа: 1. (с 1900 по 1925 г.) - этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 2. (с1926 по 1953) - этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики. 3. (начинается с 1953 г.) - этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации - Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков - основатель учения о генетике популяций. Серебровский - показал сложное строение и дробимость гена.

3. Строение ядра и хромосом

Ядро - основной компонент клетки, несущей генетическую информации Ядро- располагается в центре. Форма различная, но всегда круглая или овальная. Размеры различны. Содержимое ядра - жидкая консистенция. Различают оболочку, хроматин, кариолимфу (ядерный сок), ядрышко. Ядерная оболочка состоит из 2 мембран, разделённых перенуклеарным пространством. Оболочка снабжена порами, через которые происходит обмен крупными молекулами различных веществ. Оно может находиться в 2 состояниях: покоя - интерфазы и деления - митоза или мейоза. Интерфазное ядро представляет собой круглое образование с многочисленными глыбками белкового вещества, названного хроматином. Выделяют 2 типа хроматина: гетерохроматин и эухроматин. Хроматин состоит из очень тонких нитей, получивших название хромосом. В них заложена основная часть генетической информации индивидуума. В ядрах клеток обнаруживаются округлые тельца - ядрышки. На них осуществляется синтез рибосомной рибонуклеиновой кислоты, а также ядерных белков. В кариолимфе содержатся РНК и ДНК, белки, большая часть ферментов ядра. Ядрышко состоит из РНК, много ионов металла, в частности цинка. Не имеют собственную оболочку. Они состоят из фибриллярной и аморфной частях. Это место активного синтеза белка, белок накапливается. Значение ядра: участвует в образовании белка, РНК, рибосом; регуляция формообразования процессов и функции клеток; хранение генетического кода и его точное воспроизведение в ряду клеточного поколения. Строение каждой хромосомы индивидуальное. Оно состоит из 2 нитей - хроматид, расположенных параллельно и соединённых между собой в одной точке - центромера, первичная перетяжка, содержит ДНК. Центромеры делят хромосому на 2 плеча. По длине плеч различают 3 типа хромосом равноплечие (1-1.7),неравноплечие (1.71-4.99),одноплечие (5 и более). Имеют и вторичную перетяжку, но без ДНК. У некоторых хромосом имеется небольшой участок, прикреплённый к основному телу тонкой нитью - спутник. По наличию вторичной перетяжки и спутников различают хромосомы из разных пар. Концы хромосом содержат большое количество повторов нуклеотидов и из-за этого обладает полярностью. Концы хромосом - теломеры. Хромосомы окрашиваются ядерными красителями Гинза. Яркоокращенные участки называются гетерохроматидными, они не содержат работающих генов (в половых клетках, во всех хромосомах в районе центромер). Бледноокрашенные участки эухроматиновые, содержат активные гены.

4. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных

Свойство хромосом: 1. Индивидуальное строение. 2. Парность в соматических клетках. 3. Постоянство числа. 4. Способность к самопроизводству. В соматических клетках парные или гомологичные, набор диплоидный. В половых клетках имеются только по 1 хромосоме из каждой пары, набор гаплоидный. Набор хромосом в соматических клетках , свойственный каждому виду организма - кариотип - совокупность особенностей хромосом в соматических клетках. У к.р.с. 60 штук, у козы 60 шт., лошадь 64, собака 78, кошка 38, утка 80, карп 150. Среди хромосом у большинства вида животных имеется 1 пара, по которой ж. пол отличается от м. Эта пара называется половой хромосомой или гоносомой. Хромосомы, одинаковые для ж. и м. пола - аутосома. Если половые хромосомы гомологичные хх - пол гомогаметный. Если не гомологичные ху пол - гетерогаметные.

5. Строение и функции органоидов клетки

Органоиды - специфические дифференцируемые структуры клетки, выполняющие определённые функции. Э.П.С. состоит из канальцев, узких щелевидных полостей, расширенных полостей, отдельных пузырьков и мешочков. 2 типа Э.П.С.: агранулярная, гранулярная. Агранулярная представлена только мембранным комплексом, она участвует в синтезе углеводов и сцироидных веществ. Гранулярная - состоит из мембран, цистерн и рибосом, расположенных на наружной поверхности мембран. Хорошо развита в клетках с интенсивным обменом веществ, молодых клетках, клетках желёз и нервных клетках. При делении кл ЭПС исчезает, но появляется вновь. Значение: 1. Транспортная функция, по канальцам движутся питательные вещества. 2. Синтез углеводов и сцироидных веществ. 3. Синтез белка. Метахондрии их число в клетке большое, в клетках печени встречаются от 2500 шт. Они покрыты 2 мембранами, между которыми имеется жидкое содержимое, от внутренней мембраны отходят в виде перегородок - христе, разделяющие метахондрии на камеры. Содержимое камеры -матрикс. Наличие в них сократительных белков. В метахондрии содержатся липопротеиды. Липиды, белки. Наличие в метахондриях большого количества РНК и некоторого количества ДНК, указывает на то, что в метахондриях может происходить синтез белка. Генетический код ДНК отличается от ДНК ядра. Точно распределяется между дочерними клетками. Комплекс Гольджи - сетки, из тонких нитей, располагается вокруг ядра. Имеет 3 генетически связанных компонентов: больших вакуолей, микропузырьков, уплощённых параллельно расположенных цистерн. Обнаружены липопротеиды, рибонуклеотиды и ферменты. Между цистернами комплекса Гольджи и Э.П.С. прямого контакта нет, но связь тесная при помощи микропузырьков они отрываются от цистерн Э.П.С. и направляются к цистернам комплекса и сливаются и переносят вещества, образованные в Э.П.С. Значение. Выделительная. К.Г. - депо мембранных структур клетки. Строится вновь. Центросома состоит из центросферы, внутри 2 центриоли, связанные перемычками центросмозы. От центриолей расходятся тонкие тяжи, составляющие лучистую сферу. Каждая центриоля состоит из 2 цилиндрических телец, расположенных друг к другу. Значение: центросома связана с функцией движения; участвуют в митозе. Рибосомы состоит из 2 субъединиц: большой и маленькой, связанные в комплекс. Рибосомы - центр синтеза белка. Распределяются между дочерними кл равномерно. Лизосомы - содержат гидролитические ферменты. Функции - фагоцитоз, автолиз. Лизосомы образуются в комплексе Гольджи. Типы: первичная - необходимы для внутриклеточного переваривания. Вторичная лизосома - происходит переваривание частиц, если переваривание не до конца, то образуются остаточное тельце. Циторибосомы -участвуют в переваривание фрагментов всей клетки. Ядро - основной компонент клетки, несущей генетическую информации. Форма различная, но всегда круглая или овальная. Размеры различны. Различают оболочку, хроматин, кариолимфу, ядрышко. Ядерная оболочка состоит из 2 мембран, разделённых перенуклеарным пространством. Оболочка снабжена порами. Оно может находиться в 2 состояниях: покоя - интерфазы и деления - митоза или мейоза. Интерфазное ядро представляет собой круглое образование с многочисленными глыбками хроматина. Выделяют 2 типа хроматина: гетерохроматин и эухроматин. Хроматин состоит из очень тонких нитей, получивших название хромосом. В них заложена основная часть генетической информации индивидуума. В ядрах клеток обнаруживаются округлые тельца - ядрышки. На них осуществляется синтез р-РНК, а также ядерных белков. В кариолимфе содержатся РНК и ДНК, белки, большая часть ферментов ядра. Ядрышко состоит из РНК, много ионов металла, в частности цинка. Не имеют собственную оболочку. Они состоят из фибриллярной и аморфной частях. Это место активного синтеза белка, белок накапливается. Значение ядра: участвует в образовании белка, РНК, рибосом; регуляция формообразования процессов и функции клеток; хранение генетического кода и его точное воспроизведение в ряду клеточного поколения.

6. Митоз. Его биологическое значение.

Обеспечивает равномерное распределение хроматина между дочерними клетками. Митоз состоит из кариогенеза - деление ядра, цитогенеза - деление цитоплазмы. Выделяют 2 основные стадии: интерфаза и собственный митоз. В интерфазе происходит накопление белка, РНК и других продуктов; синтезируется ДНК и происходит самоудвоение хромосом; продолжается синтез ДНК и белков и накапливается энергия. Профаза - хромосомы - клубок длинных тонких хроматиновых нитей, разрушается ядрышко, нити веретена прикрепляются к центриолям, которые разделились и находятся на противоположных полюсах клетки, ядерная оболочка клетки разруш-ся. Метафаза (материнская звезда) - утолщение, спирализация хромосом, перемещение их в экваториальную полость клетки. Анафаза (дочерняя звезда) - разделение, удвоение хромосом на хроматиды, которые расходятся к противоположным полюсам клетки. Телофаза - сестринские хроматиды достигают противоположных полюсов и деспирализуются - 2 дочерних ядра, происходит деление цитоплазмы, образование оболочек клеток. Значение: точное распределение хромосом между 2 дочерними клетками; сохраняется преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки.

7. Мейоз. Его биологическое значение.

Это способ образования половых клеток. Сначала идёт интерфаза, т.е. перед делением каждая хромосома состоит из сестринских хроматид. Он сост из 2 делений: редукционное (уменьшительное) и эквационное (уравнительное). Профаза сильно растянута во времени. 1. лептонема - кажд хромосома сост. из 2 сестринских хроматид и наз-ся моновалент. Хромосомы деспирализованы. 2. зигонема - гомологичные хромосомы начин-ют сливаться - конъюгация. 3. пахинема - конъюгация заверш-ся, т.е. парные хром-мы соед-ся по всей длине - синопсис. Соединённые в пары хром-мы - биваленты (2 моновалента, 4 хроматида). Начин-ся кроссинговер в результате изменения последовательности генов. 4. диплонема - хром-мы отталкиваются др от друга, но удерживаются вместе за счёт перекрёста, образуют хиазму. 5. диагенез - хром-мы спирализуются, хиазмы исчезают, формир-ся веретено деления, растворяются ядрышки и яд оболочка, бивалент оказывается в цитоплазме. Метафаза - биваленты выстраиваются по экватору клетки и прикрепляются центромерами к нитям веретена деления. Анафаза - биваленты распадаются на моноваленты, кот по нитям веретена скользят к противоположным полюсам клетки. Телофаза - достигнув полюсов, моноваленты окружают себя яд оболочкой, образ-ся 2 ядра с гаплоидным набором хромосом. Но кажд хром-ма сост из 2 сестринск хроматид. После первого деления следует короткая фаза покоя - интергенез. После этого клетка вступает в эквационное деление. Оно идёт по типу митоза, т.е. в анафазе к полюсам клетки расходятся хроматиды. В рез-те двух делений из одной материнской клетки с диплоидным набором образ-ся 4 дочерние с гаплоидным набором хром-м. Значение: образ-ся гаметы с гаплоидным набором хром-м, возрастает комбинативная изменчивость у потомства (за счёт кроссинговера, за счёт независимой комбинации родительск хром-м в гаметах).

8. Сперматогенез и оогенез

Сперматогенез - протекает в стенках разветвлённых канальцев семенника. 1) размножение - сперматогонии усиленно поглощ пит вещ-ва и дел-ся не менее 10 раз, в рез-те образ-ся свыше 1000 сперматогоний. 2) рост - в сперматогонии начинают усиливаться проц-сы ассимиляции, они увелич-ся в объёме, в ядре происходит подготовка к делению. Хром-мы парные, удваиваются, сближаются - тетрада. Образ-ся сперматоциты первого порядка. Они занимают второй ряд, явл-ся самыми крупными, имеют рыхлое ядро с грубой хроматиновой структурой и содержат большое кол-во цитоплазмы. 3) созревание - сперматоциты первого порядка двукратно дел-ся: мейоз - образование сперматоцитов второго порядка с гаплоидным набором хром-м; митоз - образование сперматида - небольшая круглая клетка с бледным ядром, располагается в несколько рядов. 4) формирование - сперматиды - спермии. Сперматиды вступают в связь с отростками клетки. Около отростка каждой клетки образ-ся группа сперматид, кот из округлой становится грушевидной, ядра уменьш-ся, уплотняются, смещаются к узкому концу клетки. Этим концом сперматид погружён в цитоплазму клетки. По мере формир-ния спермии постепенно выходят из стенки канальца, сначала свешивается хвостик, а затем освобождается и головка, спермии обретают подвижность. Из одной сперматогонии развив-ся 4 спермия. Оогенез - начин-ся в яичнике, заканчив-ся в яйцеводе. 1) размножение - начин-ся во время внутриутробного развития самки, заверш-ся к концу плодного периода (в первых месяцев после её рождения). 2) рост - а) малый - за счёт усиленной ассимиляционной деятельности половых клеток, б) большой - накопление пит вещ-в (желтка). Идёт при помощи фолликулярных клеток - ооцит первого порядка. Фолликула - ооцит, окруженный одним слоем клеток. При совместной деятельности фолликулярных клеток и ооцита первого порядка формир-ся блестящая оболочка, через неё устанавливается связь половых и фолликулярных клеток. Фолликул кл начин доставлять в яйцеклетку пит вещ-ва. Они защищ. половую кл. и вырабатыв. жидкость, кот содерж полов гормоны - эстрогенные. Эта жидкость накаплив-ся между фолликул кл, поэтому между ними появл-ся небольшая полость - графов пузырёк (зрел фолликул). Место, где на стенке зрелого фолликула расположен ооцит первого порядка - яйценосный бугорок. Ооцит покрыт лучистым слоем. Остальные кл - зернистый слой. Снаружи располагается соединительно - тканая оболочка - тека. Она выполняет опорную и трофическую ф-ю. Под давлением жидкости стенка его фолликула разрывается и ооцит первого порядка вместе с лучистым венцом попадает в яйцевод - овуляция. 3) созревания: 2 деления -1. ооцит 1-го порядка образ 2 кл -ооцит 2-го порядка и 1-но направляющее тельце; 2. из ооцита 2-го порядка образ 1 зрелая яйцекл и направительное тельце.

9. Патология деления клеток и её последствия. Оплодотворение. Избирательность при оплодотворении

Митоз. При делении соматических клеток могут возникнуть нарушения, связанные с повреждением хромосом, митотического аппарата, цитоплазмы. Задержка митоза в профазе, нарушение спирализации и диспирализации, раннего разделения хроматид. Эти нарушения возникают под действием отдельных хим. веществ, радиации, вирусных инфекций. Основн. патология мейоза - не расхождение хромосом: первичная, вторичная, третичная. Первичная - у особей с нормальным кариотипом: в анафазе I нарушение разделения бивалентов и обе хромосомы из пары гомологов переходят в одну клетку., что приводит к избытку хр-м в данной клетке и недостатка в другой. Вторичная - нерасхождение возникает в гаметах у особей с избытком одной хром-мы в кариотипе (образ-ся биваленты и униваленты). Третичная - имеет структурные перестройки хромосом. Это всё отрицательно влияет на жизнеспособность организма. Оплодотворение - взаимная ассимиляция мужск. и женск. половых клеток, в рез-те кот развивается новый организм - зигота, из кот развив-ся зародыш, плод, а затем молодая особь. К спермиям в половых путях самца примешиваются секреты добавочных половых желёз и образ-ся сперма. Порция спермы выбрасывается в половые пути самки и наз-ся эякулят., кот содерж большое кол-во спермиев. Попав в половые пути самки, часть спермиев погибает, другие продвигаются в яйцевод. Яйцеклетка выделяет хим вещ-ва и спермии двигаются, т.к. вещ-во хемотаксис привлекает спермии. Они двигаются против тока жидкости - реотаксис. Благодаря сократительной мускулатуре половых путей самки, яйцеклетка выделяет фертилезин, а спермий - антифертилезин. Спермий сливается с яйцеклеткой. Спермий выделяет диалоронидазу и трипсин. Они разрушают межклеточное вещ-во лучистого венца, в рез-те фалликулярные клетки рассеиваются. После этого проникает через блестящую оболочку в цитоплазму клетки: головка - шейка - тело - хвостик отбрасывается. После вхождения на периферии цитоплазмы выделяются картикальные гранулы, образ-ся оболочка оплодотворения, головка спермия увеличивается, объем ядра спермия равен объёму ядра яйцеклетки, головка поворачивается к ядру яйцеклетки, исчезает шейка и тело. Ядро спермия наз-ся мужским пронуклиусом, а ядро яйцеклетки - женским пронуклиусом. Они сливаются и образуют синкозиоз с диплоидным набором хром-м и яйцеклетка превращ-ся в зиготу. Внесённые в спермии центриоли, расходятся к полюсам клетки - период дробления. Основное вещ-во, определяющ передачу свойств по наследству, явл-ся ДНК (х,у). Избирательность: 1) межвидовая - спермий не может проникнуть в яйцеклетку другого вида животного из-за химич и генетич несовместимости. 2) внутривидовая - чем больше генетич различий между спермием и яйцеклеткой, тем больше вероятность их слияния.

10. Фенотип и генотип. Наследственность и изменчивость и их виды

Фенотип - совокупность внешних признаков, обусловленных влиянием генотипа и внешней среды. Генотип - совокупность генов организма. Наследственность - свойство организма повторять в ряду поколений одинаковые признаки и передавать наследственные задатки этих признаков. Изменчивость - свойство организма и отдельных признаков изменяться под действием наследуемых и ненаследуемых факторов. Виды изменчивости: 1) онтогенетическая (индивидуальная); 2) ненаследственная (модификационная) - изменение признака под действием фактора среды, не затрагивающ генотип. Норма реакции - ограниченные генотипом пределы, в кот измен-ся признак под действием факторов среды. 3) наследственная: а) комбинативная - в рез-те различных сочетаний материнских и отцовских хром-м у потомства, а также в рез-те кроссинговера, б) корреляктивная - все признаки в организме взаимосвязаны, т.е. если измен-ся один, то измен-ся и другие, связанные с ним, в) мутационная - связана с изменением генетического материала. Виды наследственности: 1) ядерная. 2) цитоплазматическая: истинная; ложная - ДНК вируса, проникшая в клетку; переходная, т.е. неизученная.

11. Биометрическая обработка больших выборок (X+- mx, Cv, t)

Биометрия - наука о способах применения математическ, статистическ методов в биологии. Выборка - часть генеральной совокупности, кот исследуется с целью характеристики всего массива. (Cv = ? / x), (t = x/m), (x = A+b·l), (b=(?p·a)/n), (m= ?/vn), (x+-2,5·?), ? =l·v((?p·a?)/n) - b?). t - критерий достоверности. x- средняя арифметическая величина признака. m - ошибка средней арифметической. ? - среднее квадратичное отклонение. Cv- коэффициент вариации.

12. Биометрическая обработка малых выборок ((X+- m)x, Cv, t)

(x = ?V/n), (? = v C/ (n-1)), (C = ?V?-(?V)?/n), (C1 = (? / x)·100%), (m= ?/vn), (x +- m), (t = x/m). x- средняя арифметическая величина признака. ? - среднее квадратичное отклонение. Cv- коэффициент вариации. m - ошибка средней арифметической. t - критерий достоверности. C - сумма квадратов.

13. Биометрическая обработка качественных выборок (х, ?, rg, дисперсионный анализ)

С помощью дисперсионного анализа можно установить достоверность и силу влияния, а также относительную роль одного или нескольких факторов в общей изменчивости признака. х = ?V/N ·100; ?? = (?V? - H) / (n-1). V - сумма вариантов; n - число вариантов; Н - поправка.

Страницы: 1, 2, 3, 4, 5


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.