|
Концепции современного естествознанияp align="left">Если случайный толчок заставил данное звено повернуться, то это повлечет за собой изменение состояния соседнего звена и т.д. Таким образом, вероятность того или иного состояния звена зависит от состояния предшествующего звена, и речь идет о взаимозависимых событиях.Теорию вероятностей взаимозависимых событий создал великий математик А. А. Марков (1856-1922). Зависимые вероятности образуют своего рода цепи, которые так и называются - цепи Маркова. Полимерная цепь - это цепь Маркова. Математический метод, созданный Марковым, позволил провести строгие расчеты размеров и других физических свойств макромолекул. Молекулярные системы, элементарные единицы которых взаимодействуют друг с другом и поэтому ведут себя согласованно, называются кооперативными системами. Явления, выражающие это взаимодействие, эту согласованность, именуются кооперативными. Полимерная цепь, макромолекула - кооперативная ротамерная система. [Растяжение резины - кооперативный процесс ротамеризации, конформационной перестройки]. Пример из Волькенштейна (1972). Я еду в переполненном автобусе. Нужно выходить. Но пассажиры упакованы плотно. Выйти удается только в результате согласованного, кооперативного перемещения пассажиров, обменивающихся местами. По мере приближения автобуса к конечной станции он постепенно пустеет. Кооперативность уменьшается, в конце концов можно выйти из автобуса, никого не задевая, не спрашивая “Вы сходите?” и не прося подвинуться. Еще пример. Процесс превращения газа в жидкость (или обратный процесс) - кооперативное явление, определяемое взаимодействием молекул, согласованностью в их поведении, вызванной силами межмолекулярного взаимодействия. Так как молекулам полимеров, макромолекулам особенно трудно двигаться и поворачиваться, они легко стеклуются. Твердые пластмассы, и прозрачные и непрозрачные - это полимеры в стеклообразном состоянии. Особенности биологической формы организации материи. Молекулы живых системИз всех полимерных веществ, существующих в природе и созданных человеком, самые важные - белки и нуклеиновые кислоты, биологические полимеры, макромолекулы. Белки выполняют все жизненно важные функции в организме. Они являются катализаторами, управляющими всей химией живого организма, всеми биохимическими процессами. Они переносят кислород и запасают его, обеспечивая дыхание. Они служат основой движений внутри организма и движения организма как целого. Они защищают организм от болезней. Они являются главными опорными веществами тканей. Короче говоря, белки умеют всё. Одного они, правда, не умеют - сами себя синтезировать. Для синтеза белков нужны другие полимеры - нуклеиновые кислоты. Функциональность биополимеров непосредственно связана с их конформационными свойствами. Синтетические полимеры за редким исключением образуют статистические клубки в растворе. Биополимеры образуют глобулы. Глобула радикально отличается от клубка - глобула не рыхлое, а компактное образование, подобное твердому телу. Белковая глобула, построенная из цепи двадцати разных аминокислот, является по выражению Шредингера апериодическим кристаллом. Замечательной физической особенностью аминокислот является их хиральность (за исключением глицина). Ниже приведены две формы аланина, l - левая и d - правая. Эти две конфигурации нельзя совместить никаким поворотом, как правую и левую руки. Весьма важно и интересно то, что все белки построены только из левых аминокислот. Правые и левые молекулы разнятся знаком вращения плоскости поляризации света, хиральные молекулы оптически активны. Соответственно оптически активны все белки, и это дает возможность их изучения. При естественном свете плоскость электрических колебаний все время меняется. У поляризованного света плоскость колебаний фиксирована. Для получения такого света его пропускают через поляроидную пленку. Если пропустить плоскополяризованный свет через вещество, состоящее из асимметричных молекул, то плоскость поляризации повернется. Правые и левые молекулы поворачивают плоскость поляризации в разные стороны. Способность вращать плоскость поляризации и называется оптической активностью. Рацемическая смесь, состоящая из равных чисел правых и левых молекул, не вращает плоскости поляризации. Из Волькенштейна: Маленькая Алиса разговаривает со своей кошкой: “Как бы тебе понравилось жить в зазеркальном доме, Кисанька? Не знаю, давали ли бы тебе там молоко? А может быть, зеркальное молоко не годится для питья?” Алиса угадала, зеркальное молоко действительно совершенно не питательно. Почему же права маленькая Алиса? Белки, поступающие в организм с пищей, расщепляются на аминокислоты. Из аминокислот строятся новые белки, свойственные данному организму. Но строятся они только из левых аминокислот. Следовательно, зеркально отраженное молоко ему ни к чему. Правые аминокислоты не годятся для синтеза белка. Последовательность аминокислот в белковой цепи называется ее первичной структурой. Объединение аминокислот в белковую цепь происходит за счет групп NH2 и COOH с отщеплением молекул воды. Собственно говоря, это не полимеризация, а поликонденсация. Этот процесс применяется и в технике -посредством поликонденсации готовятся синтетические волокна - капрон и найлон. Но в капроне все звенья одинаковые, а в белке 20 разных звеньев - аминокислот. В определенном белке аминокислотные остатки расположены в строго определенной последовательности. В этом смысле белок подобен тексту, напечатанному 20-буквенным алфавитом. Содержание текста зависит от последовательности букв. Физико-химические и, следовательно, биологические свойства белка определяются его первичной структурой - последовательностью аминокислотных остатков в белковой цепи. В любых текстах встречаются опечатки. Они могут кардинально изменить смысл написанного. В одном немецком издании произведения Ницше “Так говорил Заратустра” вместо слова Incest (кровосмешение) было напечатано слово Insect (насекомое). Получилось, что Заратустра родился от насекомого. Известны “опечатки” и в белковом тексте. Они изменяют биологические свойства белка и приводят к очень тяжелым последствиям для организма. Белки функционируют в водной среде. Полимерной цепи в растворе полагается свертываться в беспорядочный клубок, этого требует второе начало термодинамики. Но если бы белки существовали в клубкообразном состоянии, то это противоречило бы точности и специфичности их действия. Биологически функциональные белки не являются такими клубками. Напротив, их структура упорядочена, так как свобода внутренних поворотов в белковой цепи сильно ограничена. Белковая цепь свернута в виде винтовой спирали благодаря внутренним поворотам вокруг единичных связей C--C и C--N. Спиральная конформация удерживается благодаря водородным связям между N--H - группой одной пептидной связи и C=O - группой другой пептидной связи. При нагревании белка, при изменении его окружения (воздействие кислот, щелочей и пр.) вторичная структура разрушается. Происходит переход спираль - клубок по принципу “все или ничего”. Иными словами, вплоть до некоторой температуры (обычно меньше 100°C) спираль устойчива, а затем разрушается как целое. Мы встречаемся здесь с кооперативным явлением, подобным фазовому переходу (нельзя освободить один атом, не трогая его соседей, также нельзя освободить одно звено в a-спирали, не разорвав соседних водородных связей. Белковая цепь вследствие слабых взаимодействий между валентно не связанными звеньями свертывается в компактную глобулу, которая является третичной структурой. Глобулярная структура определяет функциональные свойства белка, и прежде всего его ферментативные свойства. Не надо путать глобулу с беспорядочным полимерным клубком. Клубок -подвижная, флуктуирующая система, лишнная порядка. В глобуле сохраняется некоторая подвижность звеньев белковой цепи, но в целом она имеет вполне определенное строение. Глобула стабилизирована целой совокупностью преимущественно слабых взаимодействий. (Слабые взаимодействия - это водородные связи, ван-дер-ваальсовы силы, электростатические взаимодействия между заряженными группами. Особо важную роль играют гидрофобные взаимодействия). Кроме того, имеются немногочисленные добавочные химические связи - дисульфидные связи S--S между остатками цистеина. Среди 20 аминокислот имеются гидрофильные (глутамин, аспарагин, глицин и др.) и гидрофобные (триптофан, изолейцин, тирозин и др.). Гидрофобные аминокислоты имеют углеводородные R-группы. Благодаря гидрофобным взаимодействиям гибкая белковая цепь сворачивается в глобулу таким образом, что гидрофобные остатки оказываются в центральной части глобулы и не контактируют с водой. Глобулярную структуру имеют белки, существующие и функционирующие в растворе в виде отдельных молекул. Белки, образующие различные ткани в организме, чаще всего имеют форму волокон, то есть фибриллярны (паутина, шелк, шерсть, коллаген). Белки могут соединяться с дополнительным компонентом и в этом случае они называются протеидами: металлопротеиды (в нитрогеназе, обеспечивающей фиксацию азота в клубеньковых бактериях, присутствует молибден), фосфопротеиды, хромопротеиды (гемоглобин), липопротеиды (с жироподобным компонентом), гликопротеиды (углеводный компонент), нуклеопротедиы (с нуклеиновыми кислотами). Нуклеиновые кислоты. Это самые крупные из молекул, образуемых живыми организмами. Их мономерами являются нуклеотиды. Каждый нуклеотид состоит из трех молекул: фосфорной кислоты, пентозного сахара и гетероциклического азотистого основания. Нуклеотиды ДНК содержат сахар -дезоксирибозу и одно из четырех азотистых основания - аденин, гуанин, цитозин или тимин. Нуклеотиды РНК содержат сахар - рибозу и одно из четырех азотистых оснований - аденин, урацил, тимин или цитозин. Схема строения нуклеотида: фосфорная кислота - сахар - азотистое основание Молекула РНК является одинарной цепочкой нуклеотидов, а молекула ДНК - двойной. У большинства организмов ДНК является носителем генетической информации (кодирует структуру белков), а РНК принимает участие в синтезе белков. У некоторых вирусов (например, онкогенных) нет ДНК, а носителем генетической информации у них является РНК. Структура молекулы ДНК: Матричный синтез. Информационные макромолекулыНа молекулярно-генетическом уровне в пределах клетки осуществляются процессы хранения, воспроизведения и реализации генетической информации. Генетическая информация заключается в кодировании структуры белков - последовательности аминокислот в их молекулах. Эта информация “записана” последовательностью нуклеотидов в молекулах нуклеиновых кислот. Носителем наследственной информации у большинства организмов служит ДНК, и лишь у некоторых вирусов - РНК. Воспроизведение генетической информации осуществляется путем удвоения - редупликации молекул ДНК. Молекула ДНК представляет собой двойную цепочку нуклеотидов. Нуклеотиды двух цепей соединены строго определенным способом, образуя пары А-Т и Ц-Г. В результате цепи ДНК оказываются комплементарными или дополнительными. Редупликация молекул ДНК выражается в расхождении ее цепей и синтезе на них, как на матрицах, новых цепей. В силу принципа комплементарности новые молекулы ДНК оказываются идентичными исходной молекуле. Материнская расхождение синтез комплементарных Молекула днк цепей цепей и образование Дочерних молекул днк АТАГАГЦЦЦТЦА - АТАГАГЦЦЦТЦА - матрица / ТАТЦТЦГГГАГТ - новая цепь АТАГАГЦЦЦТЦА ТАТЦТЦГГГАГТ \ АТАГАГЦЦЦТЦА - новая цепь ТАТЦТЦГГГАГТ - ТАТЦТЦГГГАГТ - матрица В способности молекул ДНК к самоудвоению заключена удивительная тайна наследственности - сходство родителей и детей. Реализация генетической информации в клетке протекает в два этапа: 1 - синтез молекул информационной РНК на одной из цепей ДНК получил название транскрипции генетической информации в связи с тем, что последовательность АТЦГ в молекулах ДНК превращается в последовательность АУЦГ в молекулах РНК, и 2 - синтез белков из аминокислот на рибосомах - трансляция генетической информации, которая заключается в том, что последовательность нуклеотидов информационной РНК превращается в последовательность аминокислот в молекуле белка. Тема 2.1. Живые системы
Термодинамические особенности живых систем. Термодинамические основы жизни рассмотрены Э.Шредингером в книге “Что такое жизнь с точки зрения физика?” (1945). Он отметил, что на первый взгляд имеется решительное противоречие между эволюцией изолированной физической системы к состоянию с максимальной энтропией, согласно второму началу термодинамики, и биологической эволюцией, идущей от простого к сложному. Организмы, однако, не изолированные, а открытые системы, обменивающиеся с окружающей средой и веществом, и энергией. Находясь в неравновесном состоянии, организмы поддерживают это состояние, постоянно совершая работу против термодинамического равновесия (Э.Бауэр, 1936). Поддержание неравновесного состояния, или даже уменьшение энтропии состояния организмов оплачивается поступлением энергии извне и увеличением энтропии в окружающей среде. Так что в системе “организм-среда” второе начало термодинамики не нарушается. Принципы взаимодействия организма и среды обитанияЖивой организм - открытая, термодинамически неравновесная система, связанная с окружающей средой обменом веществ и энергии. Среда - природные тела и явления, с которыми организм находится в прямых или косвенных взаимоотношениях. Условия среды - совокупность факторов, воздействующих на организм. Можно выделить условия, необходимые для нормальной жизнедеятельности организма (тепло, влажность, освещенность, соленость) и ресурсы вещества и энергии, которые используются организмом для поддержания неравновесного состояния. Продукты метаболизма (обмена) с высоким содержание энтропии организм выделяет в окружающую среду. Своей жизнедеятельностью организм изменяет среду, изменяя и условия своей жизни. Изменение в условиях среды вызывают изменения и характера жизнедеятельности или поведения организма, которые носят адаптивный характер. Некоторые изменения среды могут оказаться несовместимыми с жизнью, что вызывает гибель или миграцию организма. Таким образом, взаимоотношения организма со средой характеризуются активностью организма по отношению к среде, что выражается в стремлении организма к самосохранению, гомеостазису, в поисках или даже создании (для животных) оптимальных условий для своего существования. Принципы воспроизводства и развития живых систем Самым поразительным свойством живого вещества является способность к воспроизведению и эволюции. Во всех живых организмах процессом воспроизведения управляет ДНК, молекулы которой вместе с молекулами РНК снабжают новый организм информацией о том, как он должен быть устроен и как ему функционировать. Генетическая информация в ДНК закодирована последовательностью нуклеотидов. Реализуется эта информация в процессе синтеза белков. Информация о структуре молекулы белка - о последовательности аминокислот в нем - содержится в одном из участков одной из молекул ДНК. Этот участок называется геном. Совокупность всех генов, которые содержатся в молекулах ДНК данного организма, называется генотипом. Совокупность признаков и свойств организма называется фенотипом. Фенотип формируется в ходе индивидуального развития - онтогенеза. Фенотип организма на разных стадиях онтогенеза различен. Весь ход онтогенеза, его стадии и конечный результат, продолжительность запрограммированы генотипом. Однако эта программа допускает изменения хода онтогенеза, признаков и свойств организма под влиянием условий внешней среды в пределах, которые называются нормой реакции. Такие изменения носят приспособительный, или адаптивный характер и называются модификациями. На молекулярном уровне способность к воспроизведению обеспечивается репликацией двойных спиралей ДНК: на одной из половинок старой молекулы синтезируется половинка новой, в результате из одной материнской молекулы ДНК получается две дочерних, которые идентичны друг другу и материнской. Это матричный способ воспроизведения информации: спирали материнской молекулы ДНК являются матрицами для синтеза дочерних молекул. Иногда при репликации ДНК происходят изменения в последовательности нуклеотидов, которые сохраняются и воспроизводятся при дальнейшей репликации. Такие изменения последовательности нуклеотидов в молекулах ДНК приводят к изменению последовательности аминокислот в молекулах белков и называются мутациями. Мутации приводят к изменению фенотипа, которые могут быть полезными, нейтральными или вредными, что является причиной дифференциального размножения особей с различными генотипами. Дифференциальное размножение лежит в основе биологической эволюции. Клеточное строение организмов. Принципы структурной организации и регуляции метаболизма Впервые клетки (точнее, пустые и уже неживые клеточные стенки) увидел в микроскоп Роберт Гук в 1665 году. Основной вклад в развитие клеточной теории внесли Т.Шванн (1838) и Р.Вирхов (1855). Все живые организмы построены из клеток: одноклеточные - из одной, многоклеточные - из множества клеток, образующихся путем деления из одной клетки-зиготы. Человеческое тело состоит примерно из (одного квадрильона) клеток. Клетка обладает всеми основными свойствами живой системы: обменом веществ и энергии (метаболизм), размножением и ростом, реактивностью и движением. Она является наименьшей структурной и функциональной единицей живого. Клетка состоит из трех основных частей: 1) поверхностной или клеточной мембраны, которая отделяет клетку от внешней среды и контролирует обмен между клеткой и средой; 2) цитоплазмы, содержащей разнообразные микроструктуры и органеллы и 3) клеточного ядра, в котором содержится ДНК - хранитель генетической информации. Клеточная мембрана представляет собой двойной слой молекул липидов, в который встроены молекулы белков. Клетка способна выделять за пределы своей наружной мембраны различные вещества, например слизь, целлюлозу, образующие клеточные стенки, и другие материалы, а также избирательно поглощать различные вещества извне. Мембрана обеспечивает поддержание определенной концентрации солей внутри клетки на постоянном уровне. Гибнущая клетка теряет контроль над внутренней концентрацией различных веществ, особенно солей. Поглощение и выделение различных веществ живой клеткой контролируется особыми белками, встроенными в мембрану. Эти белки служат как бы воротами или насосами, и их работа связана с потреблением энергии. Внутри мембраны заключено клеточное содержимое - очень вязкая среда, называемая цитоплазмой. В цитоплазме находятся разнообразные органеллы, которые также обычно окружены мембранами. К ним относятся митохондрии, в которых заключены дыхательные ферменты. Здесь “сжигаются” сахара и синтезируется АТФ (аденозинтрифосфорная кислота), богатая энергией. В растительных клетках кроме митохондрий есть хлоропласты, содержащие хлорофилл. Здесь происходит фотосинтез, в ходе которого синтезируются сахара и молекулы АТФ. В клетках бактерий ДНК свободно располагается в цитоплазме. В клетках грибов, растений и животных ДНК входит в состав хромосом, которые располагаются в ядре. Ядро отделено от цитоплазмы ядерной мембраной. В типичной клетке содержится свыше 500 различных ферментов и протекают сотни и даже тысячи химических реакций, которые осуществляются с помощью белков-ферментов. Синтез всех необходимых клетке веществ контролируется следующим образом: 1) С помощью репрессии (подавление) или индукции синтеза на генном уровне. Конечный продукт биосинтеза может выключить работу соответствующего гена (репрессия). Поступившее в клетку или образовашееся в ней вещество может включить работу соответствующего гена (индукция). 2) Посредством ингибирования (подавления) конечным продуктом активности ферментов. Если вещество становится доступным в достаточном количестве, то это ведет к подавлению синтеза как его самого, так и ферментов, участвующих в его образовании. Ингибирование конечным продуктом есть проявление отрицательной обратной связи, обычного механизма регуляции, который встречается не только в клетках. Например, когда вода из туалетного бачка спущена, он снова наполняется до нужного уровня. Термостатическое устройство под действием тепла отключает систему обогрева комнаты, а наполненный желудок через посредство нервной системы выключает чувство голода. Жизненный цикл клеткиНовые клетки образуются только в результате деления предшествующих клеток (принцип Вирхова). Основной способ деления клеток - митоз. Жизненный цикл клетки представляет собой промежуток времени от момента возникновения клетки до последующего деления. В это время клетка растет, специализируется и выполняет соответствующие функции в составе тканей и органов многоклеточного организма. Ткани животного организма характеризуются различной судьбой составляющих их клеток. Так, в постоянно обновляющихся тканях (костный мозг, кишечный эпителий, эпителий кожи) большинство клеток постоянно находятся в митотическом цикле (до 80%). В растущих тканях (печень, почки), напротив, только 5-10% клеток непрерывно делятся, а другие выходят из митотического цикла и дифференцируются. Клетки стабильных тканей (нервной и мышечной систем) в конце эмбрионального периода выходят из митотического цикла, необратимо дифференцируются и выполняют специфические функции в течение всей жизни организма. Единство и многообразие клеточных типов Разнообразие клеток столь же удивительно, как и разнообразие растений и животных. Проще всего устроены клетки цианобактерий и настоящих бактерий. У них отсутствуют ядра, митохондрии, пластиды и некоторые другие структуры, характерные для клеток высших организмов, не развита система внутренних мембран. В связи с отсутствием ядра такие клетки называются прокариотическими. Бактериальные клетки могут быть округлыми, палочковидными, изогнутыми или скрученными. Клетки шарообразных бактерий (кокков) способны склеиваться друг с другом, образуя пары, комочки, пленки или длинные цепи. Палочковидные бактерии (бациллы) могут образовывать пары или цепочки, но чаще живут как одиночные клетки. Клетки настоящих водорослей и наземных растений, грибов и животных имеют оформленное ядро и называются эукариотическими. Огромное число эукариотических организмов существуют как отдельные клетки: одноклеточные водоросли (хлореллы), одноклеточные грибы (дрожжи) и одноклеточные животные (амебы, инфузории). Клетки многоклеточных растений и животных могут выглядеть совершенно по-разному. Человек, например, как и все прочие позвоночные, состоит из нервных и мышечных клеток, клеток печени, костной ткани и многих других. Разнообразие формы и размеров клеток соответствует разнообразию их функций. Несмотря на это разнообразие в основе своей все клетки очень сходны, и каждая клетка осуществляет все основные жизненные функции, которые свойственны любому живому существу. Дифференциация и интеграция функций в организме Многоклеточные организмы, к которым относятся высшие растения и животные, состоят из множества специализированных клеток, которые происходят из одной исходной неспециализированной клетки, в типичном случае зиготы. Вопрос о том, как происходит эта специализация, какой механизм координирует развитие различных клеток и организует построение их них различных тканей и органов, - один из самых волнующих в современном естествознании. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |