|
Концепции современного естествознанияp align="left">Механистические взгляды на мир господствовали в естествознании не только в XVII, XVIII , но и почти весь XIX век. В целом природа понималась как гигантская механическая система, функционирующая по законам классической механики. Считалось, что в силу необходимости, действующей в природе, судьба даже отдельной материальной частицы заранее предрешена на все времена. Ученые-естествоиспытатели видели в классической механике прочную и окончательную основу естествознания. Многие естествоиспытатели вслед за Ньютоном старались объяснить, исходя из начал механики самые различные природные явления. При этом они неправомерно экстраполировали законы, установленные лишь для механической сферы явлений, на все процессы окружающего мира. Длительное время теории, объяснявшие закономерности соединения химических элементов, опирались на идею тяготения между атомами. Лаплас был убежден, что к закону всемирного тяготения сводятся все явления, известные ученым. Исходя из этого, он работал над созданием новой, молекулярной механики, которая, по его мнению, была призвана дополнить механику Ньютона и объяснить химические реакции, капиллярные явления, феномен кристаллизации, а также то, почему вещество может быть твердым, жидким или газообразным. Лаплас видел причины всего этого во взаимном притяжении между молекулами, которое, считал он, есть только «видоизменение всемирного тяготения». Как очередное подтверждение ньютоновского подхода к вопросу об устройстве мира было первоначально воспринято физиками открытие, сделанное французским военным инженером, членом парижской Академии наук Шарлем Огюстом Кулоном (1736 - 1806). Оказалось, что положительный и отрицательный электрические заряды притягиваются друг к другу прямо пропорционально величине зарядов и обратно пропорционально квадрату расстояния между ними. Это означало, что в науке впервые появился один из законов электромагнетизма. После Кулона открылась возможность построения математической теории электрических и магнитных явлений. Механическая картина мира знала только один вид материи - вещество, состоящее из частиц, имеющих массу. В XIX веке к числу свойств частиц стали прибавлять электрический заряд. Английский химик и физик Майкл Фарадей (1791 - 1867) ввел в науку понятие электромагнитного поля. Ему удалось показать опытным путем, что между магнетизмом и электричеством существует прямая динамическая связь. Таким образом, он впервые объединил электричество и магнетизм, признал их одной и той же силой природы. В результате в естествознании начало утверждаться понимание того, что, кроме вещества, в природе существует еще и поле. Математическую разработку идей Фарадея предпринял выдающийся английский ученый Джеймс Клерк Максвелл (1831 - 1879). Его основной работой, заключавшей в себе математическую теорию электромагнитного поля, явился «Трактат об электричестве и магнетизме», изданный в 1873 г. Введение Фарадеем понятия электромагнитного поля и математическое определение его законов, данное в уравнениях Максвелла, явились самыми крупными событиями в физике со времен Галилея и Ньютона. Но потребовались новые результаты, чтобы теория Максвелла стала достоянием физики. Решающую роль в победе этой теории сыграл немецкий физик Генрих Рудольф Герц (1857 - 1894). В 1886 году Герц продемонстрировал «беспроволочное распространение» электромагнитных волн и тем самым экспериментально проверил теоретические выводы Максвелла. Он также смог доказать принципиальную тождественность полученных им электромагнитных переменных полей и световых волн. Работы в области электромагнетизма положили начало крушению механистической картины мира и открыли путь к новому миропониманию, отличающемуся от механистического. Результаты работ Фарадея, Максвелла и Герца привели к развитию современной физики, к созданию новых понятий, образующих новую картину действительности.9. Физика на рубеже XIX-XX веков, ее открытия и достижения Классическая механика господствовала в науке два столетия, идя от одного достижения к другому. Казалось, что ничто не предвещало заминок и неудач. Была создана кинетическая теория газов на основе статистического описания поведения большого числа движущихся частиц атомов или молекул. Были открыты законы термодинамики, создана теория электричества и магнетизма, получены знаменитые уравнения электродинамики Максвелла, объединившие эти теории. Однако оказалось, что, прекрасно описывая явления электромагнетизма, эти уравнения не подчиняются принципам относительности Галилея. Покоящийся и движущийся наблюдатель будут получать разные результаты при рассмотрении процессов взаимодействия движущихся и неподвижных зарядов. Принцип относительности Галилея стал несовместимым с уравнениями Максвелла. К концу XIX века это противоречие затронуло основания физики. Его необходимо было разрешить. В конце концов естествознание вынуждено было отказаться от признания особой, универсальной роли механики. На смену ей постепенно приходило новое понимание физической реальности. В 1895 году началась научная революция, ознаменовавшая переход к новому способу познания, отражающему глубинные связи и отношения в природе. Она включала в себя как неожиданные открытия (открытия рентгеновских лучей, радиоактивности, и т.д.), так и великие теоретические достижения: квантовая теория М. Планка (1900 г.), специальная и общая теория относительности А. Эйнштейна (1905 - 1906 гг.), атомная теория Резерфорда - Бора в 1913 г. Английский физик и общественный деятель Дж. Бернал назвал этот период в развитии физики героическим. В это время исследуются новые миры главным образом с помощью технических и теоретических средств старой науки XIX века. Это был период в основном индивидуальных достижений: супругов Кюри, Резерфорда, Планка, Бора, Эйнштейна. Эволюция в науке на рубеже XIX - XX веков принесла немало сенсационных открытий, разрушивших прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. В 1895 году В. Рентген открыл невидимые глазом электромагнитные излучения, проникающие через некоторые непрозрачные для видимого света материалы. Эти лучи были названы рентгеновскими. В 1896 году французский физик А. Беккерель открыл явление естественной радиоактивности. Радиоактивное излучение свидетельствовало о наличии внутри атома колоссальных источников энергии и о превращаемости элементов. В 1897 году английский физик Дж. Томсон открыл первую элементарную частицу - электрон. Открытия радиоактивности и электрона выдвинули проблему внутреннего строения атома. Уяснив, что электрон является составной частью атомов, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом внутри положительно заряженной сферы. При устойчивом состоянии атома электроны располагаются концентрическими слоями. Несмотря на наивность этой модели, представление о слоистом расположении электронов оказалось перспективным. В 1904 году японский физик Нагаоке пришел к выводу, что атом по своему строению напоминает Солнечную систему, где вокруг положительного ядра вращается кольцо, состоящее из большого числа электронов. Эта модель сначала не привлекла внимания физиков, так как противоречила очевидным фактам. Однако в 1909 - 1910 гг. английский физик Э. Резерфорд обнаружил, что в атомах существуют ядра - положительно заряженные микрочастицы, размер которых чрезвычайно мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Резерфорд разработал новый вариант планетарной модели. В центре атома расположено ядро с размером порядка 10-13 см. Вокруг него вращаются электроны, число которых таково, что общий заряд атома равен нулю. Однако эта модель атома оказалась несовместимой с электродинамикой Максвелла, согласно которой вращающиеся электроны должны непрерывно излучать электромагнитные волны, терять энергию и падать на ядро, что ведет к неустойчивости атома. Однако это в природе не наблюдается. Электроны, двигающиеся по круговым орбитам вокруг ядра, не только не падали на ядро, но и излучали не непрерывную энергию, а лишь определенными порциями - квантами. Это явление объяснил немецкий физик М. Планк в своей теории, получившей название квантовой. В 1913 году датский физик Н. Бор, опираясь на теорию М. Планка, разработал квантовую модель атома. В ее основу он положил следующие постулаты: в любом атоме существуют дискетные (стационарные) состояния, находясь в которых атом энергию не излучает; при переходе атома из одного стационарного состояния в другое он излучает или поглощает порцию энергии. Ядром революции в естествознании на рубеже XIX - XX веков явилось создание новой механики. Размышляя над тем, как примирить электромагнитную теорию Максвелла с классической механикой, А. Эйнштейн в 1905 году пришел к выводу, что принцип относительности справедлив не только в механике, но и в оптике и электродинамике, а видоизменять надо законы и принципы классической механики. Подвергнув глубокому критическому анализу концепцию абсолютного пространства и времени, он создал специальную теорию относительности (ее часто называют релятивистской). В ней рассматриваются явления, для которых силы тяготения слабы или вообще не существуют. Специальная теория относительности представляет собой современную теорию пространства и времени при движении со скоростями, близкими к скорости света. В 1916 году была создана общая теория относительности. Это уже теория не только пространства и времени, но и тяготения. Она открыла реальность нашего искривленного четырехмерного мира пространства-времени. Гравитационное поле может интерпретироваться как следствие искривленного пространства. Поскольку мы живем в четырехмерном мире, то поведение материальных точек описывается четырьмя координатами и наглядно представить четырехмерное искривленное пространство просто невозможно. Кривизна реального четырехмерного физического мира меняется от одной области к другой. Она велика вблизи больших масс и выпрямляется вдали от них. Одно из следующих следствий теории относительности - замедление хода времени тяготением, то есть все часы в поле силы тяжести должны замедлять ход и тем больше, чем больше сила тяжести, то есть больше кривизна пространства в данной точке. Это было проверено с необходимой точностью только в 1960 году в 70 футовой башне Гарвардского университета. Таким образом, научная революция на рубеже XIX - XX веков характеризовалась не только возникновением новых идей, открытием новых неожиданных фактов и явлении, но и преобразованием духа естествознания в целом, возникновением нового способа мышления, глубоким изменением методологических принципов естествознания. 10. Предпосылки и основное содержание новейшей революции в естествознании (XX в.) Становление современной науки Новейшая революция в естествознании, начавшаяся в 90-х годах XIX века и продолжавшаяся до середины XX века, была глобальной научной революцией, подобной революции XVI-XVII вв. Начавшись в физике, она затем проникла в другие естественные науки, кардинально изменив философские и методологические основания науки, создав феномен современной науки. Первый этап революции, охарактеризованный нами выше, внес значительные изменения в представления о структуре материи, ее свойствах и видах. Второй этап революции (сер. 20-х гг. - 40-е гг. ХХ в.) был связан с формированием новой квантово-релятивистской картиной мира, основанной на двух фундаментальных теориях этого периода - квантовой механике и теории относительности Эйнштейна. Все предшествующие фундаментальные представления были оспорены и заменены новыми. Вещество больше не рассматривалось как материальная субстанция, время не абсолютно и течет по-разному для объектов, которые движутся с разной скоростью. Вблизи тяготеющих масс время вообще замедляется и при определенных условиях может даже остановиться. Планеты движутся по своим орбитам не потому, что их притягивает некая сила, действующая на расстоянии, но потому, что само пространство, в котором они движутся, искривлено. Субатомные объекты обнаруживали себя и как частицы, и как волны, демонстрируя двойственную природу. Принцип неопределенности в корне подрывал лапласовский механистический детерминизм. Третий этап (40-е - 70-е гг. ХХ в.) начался с овладения атомной энергией, создания ЭВМ и кибернетики, освоения космоса и развития космонавтики и др. Научная революция соединяется с технической революцией, что приводит к НТР. На лидирующие позиции наряду с физикой начинает претендовать биология. Развитие биосферного подхода привело к новому пониманию феномена жизни. Жизнь перестала восприниматься как случайное явление во Вселенной и превратилась в закономерный этап саморазвития материи. Науки биосферного класса: почвоведение, биогеохимия, биоценология, биогеография изучают системы, в которых происходит взаимопроникновение живой и неживой природы. Сущность НТР проявляется в превращении науки в непосредственную производительную силу общества, а самого производства - в простое технологическое применение науки. Конкретно этот процесс проявляется во внедрении автоматизации управляемых систем на основе электроники, в использовании новых видов энергии (прежде всего развитие атомной энергетики), в увеличении удельного веса химической технологии, связанной с производством материалов с заранее заданными свойствами, космонавтика. Начинают формироваться новые представления о Вселенной в целом и обо всех ее проявлениях с точки зрения глобального эволюционизма. Первыми попытались распространить принцип эволюционизма за пределы биологических наук физики. Они выдвинули гипотезу расширения Вселенной, признав несостоятельность предположения о ее стационарности. Вселенная явно развивается, начиная с гипотетического Большого взрыва, давшего энергию для ее формирования и развития. Эта концепция была предложена в 40-е и окончательно утвердилась в 70-е гг. Современный эволюционизм в биологических науках нашел свое проявление в поиске закономерностей и механизмов эволюции сразу на многих уровнях организации живой материи. Основная работа велась (и ведется) на молекулярно-генетическом уровне, в результате чего была создана синтетическая теория эволюции (синтез генетики и дарвинизма). Проникновение принципа эволюционизма в геологию привел к утверждению концепции дрейфа континентов. Возник ряд дисциплин, которые сформировались именно благодаря применению принципов развития и поэтому были эволюционны в самой своей основе: биогеохимия, антропология, экология и т.д. Одним из важнейших результатов внедрения принципа глобального эволюционизма было возникновение синергетики. Если в классической науке господствовало убеждение, что материи свойственна тенденция к понижению степени ее упорядоченности, стремление к равновесию, т.е. в энергетическом отношении к хаотичности. Однако исследование живых систем давало факты, прямо противоречащие этому. Степень их упорядоченности не только не убывала со временем, а напротив, возрастала. Распространение принципа эволюционизма на все уровни материи сделал это противоречие еще более заметным. Стало очевидным, что для сохранения целостного непротиворечивого представления о мире нужно признать, что в природе, во Вселенной действует не только разрушительный, но и созидательный принцип. Материя способна самоорганизовываться и самоусложняться. Возникла теория самоорганизации, которая стала развиваться по нескольким направлениям - синергетика (Г.Хакен), неравновесная термодинамика (И.Пригожин), теория катастроф (Р.Том). Сформировавшись на базе физических дисциплин - термодинамики, радиофизики и др., в настоящее время синергетика имеет междисциплинарный характер. Ее идеи подводят базу под глобальный эволюционный синтез, осуществляющийся в науке. В то же время во второй половине ХХ века стала складываться парадоксальная ситуация: с одной стороны, наука предъявила весомые доказательства своей ведущей роли в обществе, с другой стороны, в культуре формировалось и развивалось отрицательное отношение к науке - антисциентизм. Использование научных открытий для создания новых видов оружия и вооружения злодеев средствами массового уничтожения (от ядерного до химического и бактериологического), применение научных достижений для манипулирования сознанием людей, попытки создания в обществе тотального компьютерного контроля, эксперименты с генами животных и людей и др. - все это заставило многих отказаться от своей прежней безоговорочной веры в науку. Все это свидетельствует о кризисе культуры и цивилизации и связанной с ним переоценке ценностей. При этом подвергаются серьезной критике и уточняются место и роль науки, и, прежде всего, естествознания и техники, в жизни общества. Тема 5. Структурные уровни организации материи В современной науке в основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета и т.д. может быть рассмотрен как система - сложное образование, включающее составные части, элементы и связи между ними. Элемент в данном случае означает минимальную, далее неделимую часть данной системы. Совокупность связей между элементами образует структуру системы, устойчивые связи определяют упорядоченность системы. Связи по горизонтали - координирующие, обеспечивают корреляцию (согласованность) системы, ни одна часть системы не может измениться без изменения других частей. Связи по вертикали - связи субординации, одни элементы системы подчиняются другим. Система обладает признаком целостности - это означает, что все ее составные части, соединяясь в целое, образуют качество, не сводимое к качествам отдельных элементов. Согласно современным научным взглядам все природные объекты представляют собой упорядоченные, структурированные, иерархически организованные системы. В самом общем смысле слова «система» обозначает любой предмет или любое явление окружающего нас мира и представляет собой взаимосвязь и взаимодействие частей (элементов) в рамках целого. Структура - это внутренняя организация системы, которая способствует связи ее элементов в единое целое и придает ей неповторимые особенности. Структура определяет упорядоченность элементов объекта. Элементами являются любые явления, процессы, а также любые свойства и отношения, находящиеся в какой-либо взаимной связи и соотношении друг с другом. В понимании структурной организации материи большую роль играет понятие «развитие». Понятие развития неживой и живой природы рассматривается как необратимое направленное изменение структуры объектов природы, поскольку структура выражает уровень организации материи. Важнейшее свойство структуры - ее относительная устойчивость. Структура - это общий, качественно определенный и относительно устойчивый порядок внутренних отношений между подсистемами той или иной системы. Понятие "уровень организации" в отличие от понятия "структура" включает представление о смене структур и ее последовательности в ходе исторического развития системы с момента ее возникновения. В то время как изменение структуры может быть случайным и не всегда имеет направленный характер, изменение уровня организации происходит необходимым образом. Системы, достигшие соответствующего уровня организации и имеющие определенную структуру, приобретают способность использовать информацию для того, чтобы посредством управления сохранить неизменным (или повышать) свой уровень организации и способствовать постоянству (или уменьшению) своей энтропии (энтропия - мера беспорядка). До недавнего времени естествознание, и другие науки могли обходиться без целостного, системного подхода к своим объектам изучения, без учета исследования процессов образования устойчивых структур и самоорганизации. В настоящее время проблемы самоорганизации, изучаемые в синергетике, приобретают актуальный характер во многих науках, начиная от физики и кончая экологией. Задача синергетики - выяснение законов построения организации, возникновения упорядоченности. В отличие от кибернетики здесь акцент делается не на процессах управления и обмена информацией, а на принципах построения организации, ее возникновения, развития и самоусложнения (Г.Хакен). Вопрос об оптимальной упорядоченности и организации особенно остро стоит при исследованиях глобальных проблем - энергетических, экологических, многих других, требующих привлечения огромных ресурсов. Современные взгляды на структурную организацию материи В классическом естествознании учение о принципах структурной организации материи было представлено классическим атомизмом. Идеи атомизма служили фундаментом для синтеза всех знаний о природе. В XX веке классический атомизм подвергся радикальным преобразованиям. Современные принципы структурной организации материи связаны с развитием системных представлений и включают некоторые концептуальные знания о системе и ее признаках, характеризующих состояния системы, ее поведение, организацию и самоорганизацию, взаимодействие с окружением, целенаправленность и предсказуемость поведения и др. свойства. Наиболее простой классификацией систем является деление их на статические и динамические, которое, несмотря на его удобство все же условно, т.к. все в мире находится в постоянном изменении. Динамические системы делят на детерминистские и стохастические (вероятностные). Эта классификация основана на характере предсказания динамики поведения систем. В первом случае предсказания носят однозначный и достоверный характер. Такие системы исследуются в механике и астрономии. В отличие от них стохастические системы, которые обычно называют вероятностно - статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них имеют не достоверный, а лишь вероятностный характер. По характеру взаимодействия с окружающей средой различают системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, т.к. представление о закрытых системах возникло в классической термодинамике как определенная абстракция. Подавляющее большинство, если не все системы, являются открытыми. Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть различными и даже придти в конфликт друг с другом. Классификация и изучение систем позволили выработать новый метод познания, который получил название системного подхода. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений. Самым значительным шагом в развитии системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. Хотя отдельные теории управления существовали и до кибернетики, создание единого междисциплинарного подхода дало возможность раскрыть более глубокие и общие закономерности управления как процесса накопления, передачи и преобразования информации. Само же управление осуществляется с помощью алгоритмов, для обработки которых служат компьютеры. Универсальная теория систем, обусловившая фундаментальную роль системного метода, выражает с одной стороны, единство материального мира, а с другой стороны, единство научного знания. Важным следствием такого рассмотрения материальных процессов стало ограничение роли редукции в познании систем. Стало ясно, что чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем нельзя полностью сводить к законам низших форм или более простых систем. Как антипод редукционистского подхода возникает холистический подход (от греч. holos - целый), согласно которому целое всегда предшествует частям и всегда важнее частей. Всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Поэтому процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |