|
Углеродный цикл и изменения климатана границе раздела между атмосферой и океаном зависит от состояния поверхности океана, от скорости ветра и волнения. Буферные свойства карбонатной системы. При растворении [pic] в морской воде происходит реакция гидратации с образованием угольной кислоты [pic], которая в свою очередь диссоциирует на ионы [pic]. Карбонатная система определяется суммарной концентрацией растворённого неорганического углерода ([pic]); полным содержанием боратов ([pic]В); щелочным резервом (А); кислотностью (pH); парциальным давлением расворённого углекислого газа [pic], которое при условии равновесия с атмосферой равно парциальному давлению [pic] в атмосфере. При поглощении [pic] морской водой щёлочность остаётся неизменной, а образование и разложение органических и неорганических соединений приводит к изменению как [pic], так и А. Карбонатная система имеет следующие основные особенности: 1. Растворимость [pic] в морской воде и соответственно концентрация суммарного углерода, находящегося в равновесии с атмосферным [pic] при заданном значении концентрации последнего, зависят от температуры. 2. Обмен [pic] между газовой фазой и раствором зависит от так называемого буферного фактора, который также называют фактором Ревелла. Растворимость и буферный фактор увеличиваются при понижении температуры. Так как изменение парциального давления углекислого газа в направлении от полюса к экватору невелико, в среднем [pic] переносится из атмосферы в океан в высоких широтах и в противоположном направлении в низких, хотя наблюдаются отклонения от этой упрощённой картины вследствие того, что в результате апвеллинга из глубинных слоёв океана к поверхности приносятся обогащённые углекислым газом воды. Буферный фактор имеет величину порядка 10 и увеличивается с ростом значений [pic]. Это означает, что [pic] чувствительно к довольно малым изменениям [pic] в воде. При сохранении равновесия в системе атмосфера - поверхностные воды океана изменение концентрации [pic] в атмосфере примерно на 25% в течение последних 100 лет вызовет изменение содержания суммарного расворённого неорганического углерода в поверхностных водах только на 2-2,5%. Таким образом, способность океана поглощать избыточный атмосферный [pic] в 10 раз меньше той, которую можно было бы ожидать исходя из сравнения размеров природных резервуаров углерода. Углерод в морской воде. Полное содержание углерода и щёлочность. Как показали исследования, содержание суммарного неорганического углерода в океане в 1983 году более, чем в 50 раз превышало содержание [pic] в атмосфере. Кроме того, в океане находятся значительные количества растворённого органического углерода. Вертикальное распределение [pic] не является однородным, его концентрации в глубинных слоях океана выше, чем в поверхностных. Наблюдается также увеличение концентрации [pic] от довольно низких значений в глубинных водах Северного Ледовитого океана к более высоким значениям в глубинных водах Атлантического океана, к ещё более высоким в Южном и Индийском океанах до максимальных В Тихом океане. Вертикальное распределение щёлочности очень похоже на распределение [pic], однако пределы изменений щёлочности значительно меньше и составляют примерно 30% изменений [pic]. Интересно отметить, что поверхностные концентрации [pic] были бы на примерно на 15% выше, если бы океаны были хорошо перемешаны, что в свою очередь означало бы, что концентрация [pic] в атмосфере должна быть около 700 млн[pic]. Наличие вертикальных градиендов [pic](так же как и щёлочности) в океанах оказывает существенное влияние на концентрации атмосферного [pic]. Фотосинтез, разложение и растворение органического вещества. Деятельность морской биоты практически полностью ограничена поверхностными слоями океана, где происходит интенсивный фотосинтез в фотической зоне и бактериальное разложение, которое сосредоточено главным образом также в верхнем стометровом слое океана. По-видимому, только около 10% первичной продукции в виде мёртвой органики в основном в форме фекальных пеллет и остатков организмов достигает более глубоких слоёв океана, и, вероятно, около 1% этого вещества откладывается на океаническом дне. Полная первичная продуктивность океана составляет около [pic]г С/год, но скорость фотосинтеза на единицу площади значительно изменяется: от 0,5 г С/(м[pic]сутки) и более в зонах интенсивного апвеллинга до менее 10% этого значения в пустынных областях океана, которые характеризуются даунвеллингом и недостатком питательных веществ. Фотосинтез зависит от доступного количества питательных веществ. Везде, где достаточно света, питательные вещества расходуются быстро. Отсутствие азота и фосфора чаще всего лимитирует скорость образования первичной продукции. Однако в высоких широтах, особенно в Южном океане, наличие сравнительно больших концентраций как азота, так и фосфора в поверхностных водах указывает на то, что какой- то другой фактор (вероятно, освещённость) лимитирует первичную продуктивность. В процессе образования первичной продукции, включающей как органические, так и неорганические соединения углерода, концентрация [pic] уменьшается. Влияние этого процесса на щёлочность может быть различным. Каждый использованный при образовании органического вещества микромоль углерода увеличивает щёлочность примерно на 0,16 мкэкв, а когда углерод используется для образования [pic], она уменьшается на 2 мкэкв. Таким образом, различия в пространственном распределении [pic] и щёлочности содержат информацию об относительных значениях продукции и разложения или растворения органического и неорганического вещества в океане. Несомненно, что увеличение концентрации атмосферного [pic] создаёт поток [pic] из атмосферы в океан, который в свою очередь должен был изменить доиндустриальное распределение [pic] в верхних слоях океана. [pic]С в океане. Распределение [pic] в растворённом неорганическом углероде во всех океанах было получено в ходе экспедиций по программе GEOSECS в 1972-1978 годах. Оказалось, что максимальные значения концентрации [pic] в поверхностных водах океана пришлись на начало 1970-х годов. Имеется также небольшое число данных (в основном для глубинных слоёв океана) о значениях концентрации [pic] в растворённом органическом углероде. Они оказались очень низкими. Это даёт основание считать, что расворённый органический углерод в основном состоит из устойчивых соединений. Легко окисляемые вещества (такие, как сахара и белки) являются важным источником энергии. Донные осадки океана. Ежегодно около [pic]г С откладывается на дне океана, часть этих отложений представляет собой органический углерод, а другая часть - [pic]. Органический углерод является основным источником энергии для организмов, обитающих на дне моря, и только малая его часть захороняется в осадках, исключение составляют прибрежные зоны и шельфы. В некоторых ограниченных областях (например, в некоторых районах Балтийского моря) содержание кислорода в придонных водах может быть очень низким, соответственно уменьшается скорость окисления и значительные количества органического углерода захороняются в осадках. Области с бескислородными условиями увеличиваются вследствие загрязнения прибрежных вод, и в последние годы, вероятно, количество легко окисляемого органического вещества также увеличилось. Выше лизокнина океанические воды пересыщены по отношению к [pic], уровень лизокнина в Атлантическом океане расположен на глубине 4000 м, а в Тихом - всего лишь на глубине 1000 м. Над лизокнином не происходит сколько-нибудь заметного растворения [pic], в то время как на больших глубинах его растворение приводит к уменьшению выпадения в осадок, а ниже глубины карбонатной компенсации осаждения [pic] не происходит совсем. Так как толщина верхнего осадочного слоя, в котором происходит перемешивание осадков организмами, живущими на дне океана (биотурбация), составляет примерно 10 см, значительное количество углерода ([pic] г) в форме [pic] медленно обменивается с неорганическим углеродом морской воды, главным образом на глубине лизокнина. Содержание изотопа [pic] в океанических осадках довольно быстро убывает с глубиной, что даёт возможность определить скорость осадконакопления (она значительно изменялась со времени последнего оледенения). Тем не менее полное содержание [pic] в осадках мало по сравнению с его содержанием в атмосфере, биосфере и океанах. Процессы переноса в океанах. Вследствие буферных свойств карбонатной системы, изменение концентрации [pic] растворённого суммарного неорганического углерода в морской воде, необходимое для достижения состояния равновесия с возрастающей концентрацией атмосферного углекислого газа, мало, и равновесное состояние между атмосферным и растворённым в поверхностных водах [pic] устанавливается быстро. Роль океана в глобальном углеродном цикле определяется главным образом скоростью обмена вод в океане. Поверхностные слои океана довольно хорошо перемешаны вплоть до верхней границы термоклина, т.е. до глубины около 75 м в области широт примерно 45[pic]с. - 45[pic]ю. В более высоких широтах зимнее охлаждение вод приводит к перемешиванию до значительно больших глубин, а в ограниченных областях и в течение коротких интервалов времени перемешивание вод распространяется до дна океанов (как, например, в Гренландском море и море Уэдделла). Кроме того, из областей основных течений в широтном поясе 45-55[pic] (Гольфстрим в Северной Атлантике, Куросио в северной части Тихого океана и Антарктическое циркумполярное течение) происходит крупномасштабный перенос холодных поверхностных вод в область главного термоклина (глубина 100-1000 м). В слое термоклина происходит также вертикальное перемешивание. Оба процесса играют важную роль при переносе углерода в океане. Между углекислым газом в атмосфере и растворённым неорганическим углеродом в поверхностных слоях морской воды равновесие устанавливается примерно в течение года (если пренебречь сезонными изменениями). Растворённый неорганический углерод переносится вместе с водными массами из поверхностных вод в глубинные слои океана. При движении водной массы его содержание обычно возрастает за счёт поступления углекислого газа при разложении и растворении детрита, опускающегося из поверхностного слоя океана. Возникающее в результате увеличение содержания суммарного растворённого неорганического углерода можно вычислить, принимая во внимание сопутствующий рост содержания питательных веществ и щёлочности. Однако, таким способом нельзя достаточно точно определить значения концентрации [pic] для времени, когда происходило образование глубинных вод. Как было отмечено ранее, стационарное распределение [pic] в океанах обеспечивает примерный баланс между переносом, направленным в глубину (поток детрита), и переносом, направленным к поверхности (перемешивание и апвеллинг из глубоких слоёв с большими концентрациями [pic]). При поглощении антропогенного [pic] океаном поток растворённого неорганического углерода из глубинных слоёв к поверхностным уменьшается из-за повышения концентрации [pic] в поверхностных слоях океана, но при этом направленный вниз поток детрита остаётся неизменным. Справедливость этого предположения подтверждает тот факт, что первичная продуктивность в поверхностном слое океана обычно лимитируется наличием питательных веществ. Однако питательные вещества не являются лимитирующим фактором для продуктивности в основных зонах апвеллинга, расположенных в южной части Антарктического циркумполярного течения в широтном поясе 55-60[pic] ю.ш. Это обстоятельство указыавет на то, что имеются другие факторы, лимитирующие рост фитопланктона в таких широтах: например, приходящая радиация, определяющая распространение границ морского льда в северные широты весной и ранним летом южном полушарии. При других климатических режимах факторы, лимитирующие продуктивность, могут быть совершенно иными. Соответственно может изменяться и глобальный углеродный цикл. Авторы статьи, использованной в качестве основы для написания данной работы, проанализировали некоторые из этих возможных факторов и показали, что при определённых условиях в поверхностных слоях океана могут наблюдаться более низкие значения концентраций растворённого неорганического углерода по сравнению с современными, соответственно концентрации атмосферного [pic] будут также другими. Эту углеродного цикла в океане можно отметить как возможный механизм увеличения направленного вниз потока углерода в случае, если бы потепление в высоких широтах вызвало уменьшение площади морского ледяного покрова. Это механизм отрицательной обратной связи между углеродным циклом и климатической системой, т.е. повышение температуры в атмосфере должно привести к увеличению поглощения [pic] океаном и уменьшению скорости роста [pic] в атмосфере. При оценках возможных значений концентраций атмосферного [pic] в будущем обычно считают, что общая циркуляция океанов не будет изменятся. Однако несомненно, что в прошлом она менялась. Если потепление, вызванное ростом концентрации [pic] в атмосфере, будет значительным, то, вероятно, произойдёт какое-то изменение циркуляции океана. В частности, может уменьшиться интенсивность образования холодных глубинных вод, что в свою очередь может привести к уменьшению поглощения антропогенного [pic] океаном. Изменение круговорота углерода могло бы произойти также при увеличении суммарного количества питательных веществ в океане. Если наличие питательных веществ в поверхностных слоях по-прежнему будет основным фактором, лимитирующим фотосинтез, их концентрации в этих слоях должны быть очень низкими. Следовательно, должен увеличится вертикальный градиент концентрации питательных веществ между обеднёнными этими веществами поверхностными водами и глубинными слоями. В этом случае за счёт вертикального перемешивания в океане в поверхностные слои будет переноситься больше питательных веществ, что приведёт к росту интенсивности фотосинтеза, и, следовательно, увеличению потока детрита в глубинные слои океана. Вертикальный градиент концентрации [pic] также возрастёт, а поверхностные значения [pic] и парциальное давление [pic] при этом уменьшатся. Брокер проанализировал возможные механизмы, которые могли бы играть существенную роль при переходе от ледниковья к межледниковью, особенно подчеркнув роль фосфатов. Действие этих механизмов могло бы объяснить довольно низкие концентрации углекислого газа в атмосфере, которые имели место в конце ледниковой эпохи, и высокие концентрации [pic] в атмосфере в более тёплый период времени. Показано, что сложные вторичные механизмы могут вносить свой вклад в возможные изменения концентрации атмосферного [pic] в течение ближайших 100 лет, помимо непосредственного воздействия антропогенных выбросов [pic]. Как углерод, так и фосфор поступают в океан с речным стоком. Поток углерода составляет около [pic]г С/год но может увеличится из-за интенсификации сельскохозяйственной деятельности и лесопользования. Поскольку циклы углерода и фосфора взаимосвязаны, полезно оценить рост потребления фосфора в качестве удобрений в сельском хозяйстве и промышленности. Годовая добыча фосфора в 1972 году составляла [pic] г. И в дальнейшем значительно возросла. В водные системы (озёра, реки, моря) поступает не более 50% фосфора, а возможно, и значительно меньше, так как часть фосфора, использованного в качестве удобрений на полях и в лесах, остаётся в почвах. Для грубой оценки возможного роста первичной продуктивности в водных системах можно считать, что в процессе фотосинтеза используется 20-50 % имеющегося количества фосфатов и что образованное таким образом органическое вещество становится частью углеродного цикла в океане или захороняется в отложениях. Такое изменение продуктивности приведёт к удалению из атмосферы и поверхностных слоёв водных систем [pic] г. С/год. Это количество соответствует 2-6 % годового выброса углерода в атмосферу за счёт сжигания ископаемого топлива в 1972 году, поэтому данный процесс нельзя не учитывать при построении моделей изменения глобального климата. Углерод в континентальной биоте и в почвах. Углерод в биоте и первичная продуктивность. В течение последних 20 лет были предприняты многочисленные попытки определения запасов углерода в континентальной растительности и характеристик его годового круговорота: общей первичной продуктивности, дыхания и образования детрита. Оценка, характеризующая состояние континентальной биомассы на 1950 год без учёта сухостоя, равна [pic] г С. В более поздних работах, основанных на большем количестве данных, указывается, что эта оценка содержания углерода в живом веществе биомассы скорее всего завышена. В двух исследованиях, выполненных Дювинье и др., а также Олсоном и др., более подробно рассматривается неоднородность существующих биомов, особенно в тропических регионах. Согласно этим двум исследованиям, содержание углерода в резервуаре живой континентальной фитомассы на 1970 год было равно [pic] г С. Однако различные оценки продуктивности трудно сравнивать из-за различия использованных систем классификации. Сейчас становится ясным, что содержание углерода во вторичных лесах значительно меньше, чем в девственных тропических лесах, а площадь, занимаемая первыми, больше, чем считалась ранее. Многие площади, которые ранее предполагались полностью занятыми сомкнутыми лесами, сейчас оказались занятыми частично сомкнутыми лесами. Среднее время пребывания углерода в лесных системах составляет 16-20 лет, но средний возраст деревьев по крайней мере в два раза больше, так как менее половины чистой первичной продукции превращается в целлюлозу. Среднее время жизни углерода в растениях, не входящих в лесные системы, равно примерно 3 годам. Углерод в почве. По разным оценкам, суммарное содержание углерода в составляет около [pic] г С. Главная неопределённость существующих оценок обусловлена недостаточной полнотой сведений о площадях и содержании углерода в торфяниках планеты. Более медленный процесс разложения углерода в почвах холодных климатических зон приводит к большей концентрации углерода почв (на единицу поверхности) в бореальных лесах и травянистых сообществах средних широт по сравнению с тропическими экосистемами. Однако только небольшое количество (несколько процентов или даже меньше) детрита, поступающего ежегодно в резервуар почв, остаётся в них в течение длительного времени. Большая часть мёртвого органического вещества окисляется до [pic] за несколько лет. В чернозёмах около 98% углерода подстилки характеризуется временем оборота около 5 месяцев, а 2% углерода подстилки остаются в почве в среднем в течение 500-1000 лет. Эта характерная черта почвообразовательного процесса проявляется также в том, что возраст почв в средних широтах, определяемый радиоизотопным методом, составляет от нескольких сотен до тысячи лет и более. Однако скорость разложения органического вещества при трансформации земель, занятых естественной растительностью, в сельскохозяйственные угодья совершенно другая. Например, высказывается мнение, что 50% органического углерода в почвах, используемых в сельском хозяйстве Северной Америки, могло быть потеряно вследствие окисления, так как эти почвы начали эксплуатироваться до начала прошлого века или в самом его начале. Изменения содержания углерода в континентальных экосистемах. За последние 200 лет произошли значительные изменения в континентальных экосистемах в результате возрастающего антропогенного воздействия. Когда земли, занятые лесами и травянистыми сообществами, превращаются в сельскохозяйственные угодья, органическое вещество, т.е. живое вещество растений и мёртвое органическое вещество почв, окисляется и поступает в атмосферу в форме [pic]. Какое-то количество элементарного углерода может также захораниваться в почве в виде древесного угля (как продукт, оставшийся от сжигания леса) и, таким образом, изыматься из быстрого оборота в углеродном цикле. Содержание углерода в различных компонентах экосистем изменяется, поскольку восстановление и деструкция органического вещества зависят от географической широты и типа растительности. Были проведены многочисленные исследования, имевшие своей целью разрешить существующую неопределённость в оценке изменений запасов углерода в континентальных экосистемах. Основываясь на данных этих исследований, можно прийти к выводу о том, что поступление [pic] в атмосферу с 1860 по 1980 год составило [pic] г С и что в 1980 году биотический выброс углерода был равен [pic] г С/год. Кроме того, возможно влияние возрастающих атмосферных концентраций [pic] и выбросов загрязняющих веществ, таких, как [pic] и [pic], на интенсивность фотосинтеза и деструкции органического вещества континентальных экосистем. По-видимому, интенсивность фотосинтеза растёт с увеличением концентрации [pic] в атмосфере. Наиболее вероятно, что этот рост характерен для сельскохозяйственных культур, а в естественных континентальных экосистемах повышение эффективности использования воды могло бы привести к ускорению образования органического вещества. Прогнозы концентрации углекислого газа в атмосфере на будущее. Основные выводы. За последние десятилетия было создано большое количество моделей глобального углеродного цикла, рассматривать которые в данной работе не представляется целесообразным из-за того, что они в достаточной мере сложны и объёмны. Рассмотрим лишь кратко основные их выводы. Различные сценарии, использованные для прогноза содержания [pic] в атмосфере в будущем, дали сходные результаты. Ниже приведёна попытка подвести общий итог наших сегодняшних знаний и предположений, касающихся проблемы антропогенного изменения концентрации [pic] в атмосфере. . С 1860 по 1984 год в атмосферу поступило [pic] г С за счёт сжигания ископаемого топлива, скорость выброса [pic] в настоящее время (по данным на 1984 год) равна [pic] г С/год. . В течение этого же периода времени поступление [pic] в атмосферу за вырубки лесов и изменения характера землепользования составило [pic] г С, интенсивность этого поступления в настоящее время равна [pic] г С/год. . С середины прошлого века концентрация [pic] в атмосфере увеличилась от [pic] до [pic] млн[pic] в 1984 году. . Основные характеристики глобального углеродного цикла хорошо изучены. Стало возможным создание количественных моделей, которые могут быт положены в основу прогнозов роста концентрации [pic] в атмосфере при использовании определённых сценариев выброса. . Неопределённости прогнозов вероятных изменений концентрации [pic] в будущем, получаемых на основе сценариев выбросов, значительно меньше значительно меньше неопределённостей самих сценариев выбросов. . Если интенсивность выбросов [pic] в атмосферу в течение ближайших четырёх десятилетий останется постоянной или будет возрастать очень медленно (не более 0,5% в год) и в более отдалённом будущем также будет расти очень медленно, то к концу XXI века концентрация атмосферного [pic] составит около 440 млн[pic], т.е. не более, чем на 60% превысит доиндустриальный уровень. . Если интенсивность выбросов [pic] в течение ближайших четырёх десятилетий будет возрастать в среднем на 1-2 % в год, т.е. также, как она возрастала с 1973 года до настоящего времени, а в более отдалённом будущем темпы её роста замедлятся, то удвоение содержания [pic] в атмосфере по сравнению с доиндустриальным уровнем произойдёт к концу XXI века. . Основные неопределённости прогнозов концентрации [pic] в атмосфере вызваны недостаточным знанием роли следующих факторов: . скорости водообмена между поверхностными, промежуточными и глубинными слоями океана; . чувствительности морской первичной продукции к изменениям содержания питательных веществ в поверхностных водах; . захоронения органического вещества в осадках в прибрежных районах (и озёрах); . изменение щёлочности, и, следовательно, буферного фактора морской воды, вызванных ростом содержания растворённого неорганического углерода; . увеличения интенсивности фотосинтеза и роста биомассы и почвенного органического вещества в континентальных экосистемах за счёт роста концентрации [pic] в атмосфере и возможного отложения питательных веществ, поступающих из антропогенных источников; . увеличения скорости разложения органического вещества почв, особенно в процессе эксплуатации лесов; . образования древесного угля в процессе горения биомассы. Величина ожидаемого изменения средней глобальной температуры при удвоении концентрации [pic] приблизительно соответствует величине её изменения при переходе от последнего ледникового периода к современному межледниковью. Более умеренное потребление ископаемого топлива в течение ближайших десятилетий могло бы продлить возможность его использования на более отдалённую перспективу. В этом случае концентрация [pic] в атмосфере не достигнет удвоенного значения по сравнению с доиндустриальным уровнем. Проблема изменения климата в результате эмиссии парниковых газов должна рассматриваться как одна из самых важных современных проблем, связанных с долгосрочными воздействиями на окружающую среду, и рассматривать её нужно в совокупности с другими проблемами, вызванными антропогенными воздействиями на природу. Список литературы. 1. Парниковый эффект, изменение климата и экосистемы. / Под редакцией Б. Болина, Б. Р. Десса, Дж. Ягера, Р. Уоррика. / Ленинград, Гидрометеоиздат - 1989. 2. М. И. Будыко. Климат и жизнь. / Ленинград, Гидрометеоиздат - 1971. 3. М. И. Будыко. Изменения климата. / Ленинград, Гидрометеоиздат - 1974. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |