бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Нетрадиционные возобновимые источники энергии

3.плоско-линейной линзы Френеля (в).

[pic][pic][pic]

Рис. 2. Формы концентраторов солнечной энергии

Фирма Loose Industries на солнечно-газовой электростанции в

Калифорнии использует систему параболо-цилиндрических длинных отражателей

в виде желоба. В его фокусе проходит труба с теплоносителем – дифенилом,

нагреваемым до 350°С. Желоб поворачивается для слежения за солнцем только

вокруг одной оси (а не двух, как плоские гелиостаты). Это позволило

упростить систему слежения за солнцем. Солнечная энергия может

непосредственно преобразовываться в механическую. Для этого используется

двигатель Стирлинга. Если в фокусе параболического зеркала диаметром 1,5 м

установить динамический преобразователь, работающий по циклу Стирлинга,

получаемой мощности (1 кВт) достаточно, чтобы поднимать с глубины 20 метров

2 м3 воды в час.

В реальных гелиосистемах плоско-линейная линза Френеля используется

редко из-за ее высокой стоимости.

Рис.3. Солнечный водонагреватель

[pic]

Водонагреватель Водонагреватель предназначен для снабжения горячей водой,

в основном, индивидуальных хозяйств. Устройство состоит из короба со

змеевиком, бака холодной воды, бака-аккумулятора и труб. Короб стационарно

устанавливается под углом 30-50° с ориентацией на южную сторону. Холодная,

более тяжелая, вода постоянно поступает в нижнюю часть короба, там она

нагревается и, вытесненная холодной водой, поступает в бак-аккумулятор. Она

может быть использована для отопления, для душа либо для других бытовых

нужд.

Дневная производительность на широте 50° примерно равна 2 кВт/ч с

квадратного метра. Температура воды в баке-аккумуляторе достигает 60-70°.

КПД установки – 40%.

Тепловые концентраторы Каждый, кто хоть раз бывал в теплицах, знает, как

резко отличаются условия внутри нее от окружающих: Температура в ней выше

. Солнечные лучи почти беспрепятственно проходят сквозь прозрачное покрытие

и нагревают почву, растения, стены, конструкцию крыши. В обратном

направлении тепло рассеивается мало из-за повышенной концентрации

углекислого газа. По сходному принципу работают и тепловые концентраторы.

Это – деревянные, металлические, или пластиковые короба, с одной стороны

закрытые одинарным или двойным стеклом. Внутрь короба для максимального

поглощения солнечных лучей вставляют волнистый металлический лист,

окрашенный в черный цвет. В коробе нагревается воздух или вода, которые

периодически или постоянно отбираются оттуда с помощью вентилятора или

насоса.

ЖИЛОЙ ДОМ С СОЛНЕЧНЫМ ОТОПЛЕНИЕМ

Среднее за год значение суммарной солнечной радиации на широте

55°, поступающей в сутки на 20 м 2 горизонтальной поверхности,

составляет 50-60 кВт/ч. Это соответствует затратам энергии на отопление

дома площадью 60 м2 .

Для условий эксплуатации сезонно обитаемого жилища средней

полосы наиболее подходящей является воздушная система теплоснабжения.

Воздух нагревается в солнечном коллекторе и по воздуховодам подается в

помещение. Удобства применения воздушного теплоносителя по сравнению с

жидкостным очевидны:

- нет опасности, что система замерзнет;

-нет необходимости в трубах и кранах;

- простота и дешевизна.

Недостаток – невысокая теплоемкость воздуха.

Конструктивно коллектор представляет собой ряд застекленных

вертикальных коробов, внутренняя поверхность которых зачернена матовой

краской, не дающей запаха при нагреве. Ширина короба около 60 см. В части

расположения солнечного коллектора на доме предпочтение отдается

вертикальному варианту. Он много проще в строительстве и дальнейшем

обслуживании. По сравнению с наклонным коллектором (например, занимающим

часть крыши), не требуется уплотнения от воды, отпадает проблема снеговой

нагрузки, с вертикальных стекол легко смыть пыль.

Плоский коллектор, помимо прямой солнечной радиации,

воспринимает рассеянную и отраженную радиацию: в пасмурную погоду, при

легкой облачности, словом, в тех условиях, какие мы реально имеем в

средней полосе. Плоский коллектор не создает высокопотенциальной

теплоты, как концентрирующий коллектор, но для конвекционного отопления

этого и не требуется, здесь достаточно иметь низкопотенциальную теплоту.

Солнечный коллектор располагается на фасаде, ориентированном на юг

(допустимо отклонение до 30° на восток или на запад) .

Неравномерность солнечной радиации в течение дня, а также

желание обогревать дом ночью и в пасмурный день диктует необходимость

устройства теплового аккумулятора. Днем он накапливает тепловую энергию, а

ночью отдает. Для работы с воздушным коллектором наиболее рациональным

считается гравийно-галечный аккумулятор. Он дешев, прост в строительстве.

Гравийную засыпку можно разместить в теплоизолированной заглубленной

цокольной части дома. Теплый воздух нагнетается в аккумулятор с помощью

вентилятора.

Для дома, площадью 60 м 2 , объем аккумулятора составляет от 3 до

6 м3 . Разброс определяется качеством исполнения элементов гелиосистемы,

теплоизоляцией, а также режимом солнечной радиации в конкретной местности.

Система солнечного теплоснабжения дома работает в четырех режимах

(рис. 4. а-г):

– отопление и аккумулирование тепловой энергии (а);

– отопление от аккумулятора (б);

– аккумулирование тепловой энергии (в);

– отопление от коллектора (г).

В холодные солнечные дни нагретый в коллекторе воздух

поднимается и через отверстия у потолка поступает в помещения. Циркуляция

воздуха идет за счет естественной конвекции. В ясные теплые дни горячий

воздух забирается из верхней зоны коллектора и с помощью вентилятора

прокачивается через гравий, заряжая тепловой аккумулятор. Для ночного

отопления и на случай пасмурной погоды воздух из помещения прогоняется

через аккумулятор и возвращается в комнаты подогретый.

В средней полосе гелиосистема лишь частично обеспечивает

потребности отопления. Опыт эксплуатации показывает, что сезонная экономия

топлива за счет использования солнечной энергии достигает 60%.

[pic] [pic] [pic]

[pic] Рис. 4. Солнечный дом

ВЕТРОВАЯ ЭНЕРГИЯ.

Огромна энергия движущихся воздушных масс. Запасы энергии ветра более чем

в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и

повсюду на земле дуют ветры- от легкого ветерка, несущего желанную прохладу

в летний зной, до могучих ураганов, приносящих неисчислимый урон и

разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем.

Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все

ее потребности в электроэнергии! Климатические условия позволяют

развивать ветроэнергетику на огромной территории от наших западных границ

до берегов Енисея. Богаты энергией ветра северные районы страны вдоль

побережья Северного Ледовитого океана, где она особенно необходима

мужественным людям, обживающим эти богатейшие края. Почему же столь

обильный, доступный да и экологически чистый источник энергии так слабо

используется? В наши дни двигатели, использующие ветер, покрывают всего

одну тысячную мировых потребностей в энергии. Техника 20 века открыла

совершенно новые возможности для ветроэнергетики, задача которой стала

другой -получение электроэнергии. В начале века Н.Е. Жуковский разработал

теорию ветродвигателя, на основе которой могли быть созданы

высокопроизводительные установки, способные получать энергию от самого

слабого ветерка. Появилось множество проектов ветроагрегатов, несравненно

более совершенных, чем старые ветряные мельницы. В новых проектах

используются достижения многих отраслей знания. В наши дни к созданию

конструкций ветроколеса - сердца любой ветроэнергетической установки-

привлекаются специалисты-самолетостроители, умеющие выбрать наиболее

целесообразный профиль лопасти, исследовать его в аэродинамической трубе.

Усилиями ученых и инженеров созданы самые разнообразные конструкции

современных ветровых установок.

Первой лопастной машиной, использовавшей энергию ветра, был парус.

Парус и ветродвигатель кроме одного источника энергии объединяет один и

тот же используемый принцип. Исследования Ю. С. Крючкова показали, что

парус можно представить в виде ветродвигателя с бесконечным диаметром

колеса. Парус является наиболее совершенной лопастной машиной, с наивысшим

коэффициентом полезного действия, которая непосредственно использует

энергию ветра для движения.

Рис.5.Ветродвигатель каруснльного типа

[pic]

Ветроэнергетика, использующая ветроколеса и ветрокарусели (двигатели

карусельного типа см. рис. 5.), возрождается сейчас, прежде всего, в

наземных установках.В США уже построены и эксплуатируются коммерческие

установки. Проекты наполовину финансируются из государственного бюджета.

Вторую половину инвестируют будущие потребители экологически чистой

энергии.

Еще в 1714 году француз Дю Квит предложил использовать ветродвигатель в

качестве движителя для перемещения по воде. Пятилопастное ветроколесо,

установленное на треноге, должно было приводить в движение гребные колеса.

Идея так и осталась на бумаге, хотя понятно, что ветер произвольного

направления может двигать судно в любом направлении .

Первые разработки теории ветродвигателя относятся к 1918 г. В. Залевский

заинтересовался ветряками и авиацией одновременно. Он начал создавать

полную теорию ветряной мельницы и вывел несколько теоретических положений,

которым должна отвечать ветроустановка.

В начале ХХ века интерес к воздушным винтам и ветроколесам не был

обособлен от общих тенденций времени – использовать ветер, где это только

возможно. Первоначально наибольшее распространение ветроустановки получили

в сельском хозяйстве. Воздушный винт использовали для привода судовых

механизмов. На всемирно известном «Фраме» («Фрам» [фр. frum вперед] –

исследовательское судно Ф. Нансена, исследователя Арктики ) он вращал

динамомашину. На парусниках ветряки приводили в движение насосы и якорные

механизмы.

В России к началу нынешнего века вращалось около 2500 тысяч ветряков

общей мощностью миллион киловатт. После 1917 года мельницы остались без

хозяев и постепенно разрушились. Правда, делались попытки использовать

энергию ветра уже на научной и государственной основе. В 1931 году вблизи

Ялты была построена крупнейшая по тем временам ветроэнергетическая

установка мощностью 100 кВт, а позднее разработан проект агрегата на 5000

кВт. Но реализовать его не удалось, так как Институт ветроэнергетики,

занимавшийся этой проблемой, был закрыт.

Сложившаяся ситуация отнюдь не обусловливалась местным головотяпством.

Такова была общемировая тенденция. В США к 1940 году построили

ветроагрегат мощностью в 1250 кВт. К концу войны одна из его лопастей

получила повреждение. Ее даже не стали ремонтировать – экономисты

подсчитали, что выгодней использовать обычную дизельную электростанцию.

Дальнейшие исследования этой установки прекратились, а ее создатель и

владелец П. Путнэм изложил свой горестный опыт в прекрасной книге

«Энергия ветра», которая не потеряла до сих пор своей актуальности.

Неудавшиеся попытки использовать энергию ветра в крупномасштабной

энергетике сороковых годов не были случайны. Нефть оставалась

сравнительно дешевой, резко снизились удельные капитальные вложения на

крупных тепловых электростанциях, освоение гидроэнергии, как тогда

казалось, гарантирует и низкие цены и удовлетворительную экологическую

чистоту.

Существенным недостатком энергии ветра является ее изменчивость во

времени, но его можно скомпенсировать за счет расположения ветроагрегатов.

Если в условиях полной автономии объединить несколько десятков крупных

ветроагрегатов, то средняя их мощность будет постоянной. При наличии

других источников энергии ветрогенератор может дополнять существующие. И,

наконец, от ветродвигателя можно непосредственно получать механическую

энергию.

ВЕТЕР

Ветер дует везде – на суше и на море. Человек не сразу понял, что

перемещение воздушных масс связано с неравномерным изменением температуры и

вращением земли,

но это не помешало нашим предкам использовать ветер для мореплавания.

Глобальные ветры

К глобальным ветрам относятся пассаты и западный ветер.

Пассаты образуются в результате нагрева экваториальной части земли.

Нагретый воздух поднимается вверх, увлекая за собой воздушные массы с

севера и юга. Вращение земли отклоняет потоки воздуха. В результате

устанавливаются дующие круглый год с постоянной силой северо-восточный

пассат в северном полушарии и юго-восточный – в южном. Пассаты дуют в

приэкваториальной области, заключенной между 25 и 30° северной и южной

широтами соответственно. В северном полушарии пассаты охватывают 11%

поверхности океанов, а в южной – 20%. Сила пассатного ветра обычно

составляет 2-3 балла. Западный ветер дует круглый год с запада на восток

в полосе от 40 до 60° южной широты вдоль кромки дрейфующих льдов

Антарктиды. Это самый сильный постоянный ветер. Его сила достигает 8-10

баллов и редко бывает менее 5 баллов.

В глубине материка нет постоянного направления ветра. Так как разные

участки суши в разное время года нагреваются по-разному можно говорить

только о преимущественном сезонном направлении ветра. Кроме того, на разной

высоте ветер ведет себя по-разному, а для высот до 50 метров характерны

«рыскающие» потоки.

Потенциал атмосферы можно вычислить зная ее массу и скорость

рассеяния энергии. Для приземного слоя толщиной в 500 метров энергия

ветра, превращающаяся в тепло, составляет примерно 82 триллиона киловатт-

часов в год. Конечно, всю ее использовать невозможно, в частности, по той

причине, что часто поставленные ветряки будут затенять друг друга. В то же

время отобранная у ветра энергия, в конечном счете, вновь превратится в

тепло.

Среднегодовые скорости воздушных потоков на стометровой высоте

превышают 7 м/с. Если выйти на высоту в 100 метров, используя подходящую

естественную возвышенность, то везде можно ставить эффективный

ветроагрегат. На рис. 6 показаны области энергии среднегодовых потоков

ветра Европейской части стран СНГ. Если взять только нижний 100-метровый

слой и поставить установку на 100 квадратных километров, то при

установленной мощности около двух миллиардов киловатт можно выработать за

год 5 триллионов киловатт-часов, что в 2 раза больше гидроэнергетического

потенциала стран СНГ.

Местные ветры

Первыми для плавания использовались местные ветры. К ним относятся

бризы. ( Бриз [фр. brise] – свежий ветер.) Бризы – это легкие ветры,

окаймляющие берега материков и больших островов, вызываемые суточным

колебанием температуры. Их периодичность обусловлена различием

температуры суши и моря днем и ночью. Днем суша нагревается быстрее и

сильнее, чем море.

Теплый воздух поднимается над береговой полосой, а на его место

устремляется прохладный воздух с моря – морской бриз. Ночью берег

охлаждается быстрее и сильнее, чем море, поэтому теплый воздух поднимается

над морем, а его замещает холодный воздух с суши – береговой бриз.

Вторыми, постоянно дующими ветрами, являются муссоны.(Муссон [арабск.

мавсим] – время года) Эти ветры дуют в Индийском океане и связаны с

сезонным изменением температуры материка и океана. Летом солнечные лучи

сильнее нагревают сушу и ветер дует с моря на сушу. Зимой муссон дует с

суши на море. Вращение земли вызывает появление сил Кориолиса, которые

отклоняют муссоны вправо. Поэтому летом дуют юго-западные муссоны, а зимой

– северовосточные. Муссоны достигают большой силы и вызывают в Индийском

океане соответствующие местным ветрам поверхностные течения. .

[pic] Рис.6. Среднегодовые потоки энергии ветра

на стометровой высоте

УПРЯЖЬ ДЛЯ ВЕТРА

Принцип действия всех ветродвигателей один: под напором ветра

вращается ветроколесо с лопастями, передавая крутящий момент через систему

передач валу генератора, вырабатывающего электроэнергию, водяному насосу.

Чем больше диаметр ветроколеса, тем больший воздушный поток оно

захватывает и тем больше энергии вырабатывает агрегат.

Принципиальная простота дает здесь исключительный простор для

конструкторского творчества, но только неопытному взгляду ветроагрегат

представляется простой конструкцией.

Рис.7. Крыльчатый ветродвигатпель

[pic]

Традиционная компоновка ветряков – с горизонтальной осью вращения

(рис.7) – неплохое решение для агрегатов малых размеров и мощностей.

Когда же размахи лопастей выросли, такая компоновка оказалась

неэффективной, так как на разной высоте ветер дует в разные стороны. В этом

случае не только не удается оптимально ориентировать агрегат по ветру, но и

возникает опасность разрушения лопастей.

Кроме того, концы лопастей крупной установки двигаясь с большой скоростью

создают шум. Однако главное препятствие на пути использовании энергии ветра

все же экономическая – мощность агрегата остается небольшой и доля затрат

на его эксплуатацию оказывается значительной. В итоге себестоимость энергии

не позволяет ветрякам с горизонтальной осью оказывать реальную

конкуренцию традиционным источникам энергии.

По прогнозам фирмы Боинг (США) на текущее столетие – длина лопастей

крыльчатых ветродвигателей не превысит 60 метров, что позволит создать

ветроагрегаты традиционной компоновки мощностью 7 М7Вт. Сегодня самые

крупные из них – вдвое «слабее». В большой ветроэнергетике только при

массовом строительстве можно рассчитывать на то, что цена киловатт-часа

снизится до десяти центов.

Маломощные агрегаты могут вырабатывать энергию примерно втрое более

дорогую. Для сравнения отметим, что серийно выпускавшийся в 1991 году НПО

«Ветроэн» крыльчатый ветродвигатель, имел размах лопастей 6 метров и

мощность 4 кВт. Его киловатт-час обходился в 8...10 копеек.

Типы ветродвигателей

Большинство типов ветродвигателей известны так давно, что история

умалчивает имена их изобретателей. Основные разновидности ветроагрегатов

изображены на рис. 8. Они делятся на две группы:

1.ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);

2.ветродвигатели с вертикальной осью вращения (карусельные: лопастные

(1) и ортогональные (6)).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

[pic]

Рис8 Типы ветродвигателей

Крыльчатые

Для крыльчатых ветродвигателей, наибольшая эффективность которых

достигается при действии потока воздуха перпендикулярно к плоскости

вращения лопастейкрыльев, требуется устройство автоматического поворота оси

вращения. С этой целью применяют крыло-стабилизатор. Карусельные

ветродвигатели обладают тем преимуществом, что могут работать при любом

направлении ветра не изменяя своего положения.

Коэффициент использования энергии ветра (см. рис. 9.) у крыльчатых

ветродвигателей намного выше чем у карусельных . В то же время, у

карусельных – намного больше момент вращения. Он максимален для

карусельных лопастных агрегатов при нулевой относительной скорости ветра.

Распространение крыльчатых ветроагрегатов объясняется величиной

скорости их вращения. Они могут непосредственно соединяться с генератором

электрического тока без мультипликатора. Скорость вращения крыльчатых

ветродвигателей обратно пропорциональна количеству крыльев, поэтому

агрегаты с количеством лопастей больше трех практически не используются.

[pic] [pic]

Рис. 9. Коэффициенты использования

Рис.10. Однолопастной карусельный

энергии ветра и вращающие моменты

двигатель

различных типов ветродвигателей

Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в

сравнении с традиционными ветряками. При увеличении скорости ветра они

быстро наращивают силу тяги, после чего скорость вращения стабилизируется.

Карусельные ветродвигатели тихоходны и это позволяет использовать простые

электрические схемы, например, с асинхронным генератором, без риска

потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно

ограничивающее требование – использование многополюсного генератора

работающего на малых оборотах. Такие генераторы не имеют широкого

распространения, а использование мультипликаторов (Мультипликатор [лат.

multiplicator умножающий] – повышающий редуктор не эффективно из-за

низкого КПД последних.

Еще более важным преимуществом карусельной конструкции стала ее

способность без дополнительных ухищрений следить за тем «откуда дует

ветер», что весьма существенно для приземных рыскающих потоков.

Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.

Карусельный лопастный ветродвигатель наиболее прост в эксплуатации.

Его конструкция обеспечивает максимальный момент при запуске ветродвигателя

и автоматическое саморегулирование максимальной скорости вращения в

процессе работы. С увеличением нагрузки уменьшается скорость вращения и

возрастает вращающий момент вплоть до полной остановки.

Ортогональные Ортогональные ветроагрегаты, как полагают специалисты,

перспективны для большой энергетики. Сегодня перед ветропоклонниками

ортогональных конструкций стоят определенные трудности. Среди них, в

частности, проблема запуска.

В ортогональных установках используется тот же профиль крыла, что и в

дозвуковом самолете (см. рис. 8. (6)). Самолет, прежде чем «опереться» на

подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае

с ортогональной установкой. Сначала к ней нужно подвести энергию –

раскрутить и довести до определенных аэродинамических параметров, а уже

потом она сама перейдет из режима двигателя в режим генератора.

Отбор мощности начинается при скорости ветра около 5 м/с, а

номинальная мощность достигается при скорости 14-16 м/с. Предварительные

расчеты ветроустановок предусматривают их использование в диапазоне от 50

до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца,

по которому движутся крылья, составит около 80 метров.

У мощного ветродвигателя большие размеры. Однако можно обойтись и

малыми – взять числом, а не размером. Снабдив каждый электрогенератор

отдельным преобразователем можно просуммировать выходную мощность

вырабатываемую генераторами. В этом случае повышается надежность и

живучесть ветроустановки.

Неожиданные проявления и применения Реально работающие ветроагрегаты

Страницы: 1, 2, 3, 4


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.