|
Лекции по экологииЛекции по экологии2.6. КРУГООБОРОТЫ ВЕЩЕСТВ В БИОСФЕРЕ Основой динамического равновесия и стойкости биосферы является кругооборот веществ и превращения энергии, который состоит из многообразных процессов. Хорошо известны глобальные процессы кругооборота воды, кислорода, углерода, азота, фосфора, микроэлементов на Земле. В.Р. Вильямс писал, что единственный способ придать чему-то конечному свойства бесконечного – это заставить конечное вращаться по замкнутой кривой, то есть вовлечь его в кругооборот. В этом высказывании есть доля философского и религиозного понимания сути кругооборотов веществ и превращения энергии. Выделяют два основных кругооборота: большой (геологический) и малый (биологический). Геологический кругооборот веществ имеет наибольшую скорость в горизонтальном направлении между сушей и морем. Смысл большого кругооборота в том, что горные породы подвергаются разрушению, выветриванию, а продукты выветривания, в том числе растворимые в воде питательные вещества, сносятся потоками воды в Мировой океан с образованием морских напластований и возвращаются на сушу лишь частично, например, с осадками или с извлеченными человеком из воды организмами. Далее в течение длительного временного отрезка протекают медленные геотектонические изменения – движение материков, поднятие и опускание морского дна, вулканические извержения и т.д., в результате которых образовавшиеся напластования возвращаются на сушу и процесс начинается вновь. Малый кругооборот, являясь частью большого, происходит на уровне биогеоценоза. Он состоит в том, что питательные вещества почвы, вода, CO2 и другие вещества из атмосферы за счет фотосинтеза аккумулируются в веществе продуцентов (растений и некоторых бактерий), расходуются на построение тел и жизненные (обменные) процессы продуцентов и консументов. Затем в основном за счет редуцентов органические вещества разлагаются и частью минерализуются, вновь становятся доступными растениям и снова ими вовлекаются в поток вещества (кругооборот). Скорость перемещения веществ при биологическом кругообороте значительно выше, чем при геологическом. Кругооборот (перемещение) химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии с протеканием биохимических превращений (реакций) носит название биогеохимического цикла. Годичные биогеохимические циклы приводят в движение примерно 480 млрд т веществ, в основном биофильных элементов – углерода, азота, водорода, кислорода и др. 2.6.1. Кругооборот углерода Этот кругооборот, как и большая часть других кругооборотов, может быть представлен в виде упрощенной схемы (рис. 2.5.): [pic] Рис. 2.5. Кругооборот углерода Кругооборот углерода, как и любого другого элемента, совершается как по большому, так и по малому циклам. Большой (геологический) кругооборот углерода можно представить в виде схемы (рис. 2. 6.). В атмосфере и водных источниках присутствует углекислый газ СО2. Под его действием, а также при участии ветра и воды (Н2О) частью изменяется состав горных пород (например, карбонатных: известняка СаСО3, магнезита МgCO3, доломита СаСО3(МgCO3): СаСО3 + СО2 + Н2О ( Са(НСО3)2 МgCO3 + СО2 + Н2О ( Мg(НСО3)2 . Образующиеся растворимые соли (гидрокарбонаты) вымываются и выносятся в океан, частью насыщает воду океана. Частью же под воздействием неорганических условий и фильтрации воды через живые организмы (например, моллюски) эта соль преобразуется и отлагается на дне океана в виде осадочных пород (того же, например, СаСО3, частью представленного в виде ракушечника, как остатки раковин умерших моллюсков) (пункты 6, 7 рис. 2.5.). Осадочные породы претерпевают метаморфоз (различные превращения), а также под действием тектонических сил перемещаются в глубину земной коры, откуда частью через длительный период поднимаются на поверхность, а быстрее идут процессы под действием вулканических извержений, которые являются вновь источниками углерода в атмосфере в виде СО2, а иногда и СО, окисляющегося до СО2. Биотический кругооборот углерода – составная часть большого кругооборота, он связан с жизнедеятельностью организмов. [pic] Рис. 2.6. Большой (геологический) кругооборот углерода Запасы углерода, содержащегося в виде СО2, в атмосфере составляют 23,5(1011 т. Органическое вещество синтезируется зелеными растениями из СО2 атмосферы (пункт 1, рис. 2.5.), содержание которого там лишь 0,03 – 0,04 % (табл.2.8), а затем вместе с веществом растений (продуцентов) потребляется консументами разных трофических уровней (пункт 2, рис. 2.5.). Синтез органических веществ зеленые растения осуществляют с помощью энергии солнечного излучения из СО2 и Н2О в процессе фотосинтеза. Таблица 2.8. Количество углекислого газа в атмосфере и его кругооборот, в кг | |По |По |По | | |Ю.Саксу|Г.Гредер|Е.Рейнау| | | |у | | |Количество СО2 |2500(10|2100(101|1530(101| | |12 |2 |2 | |Усваивается |648(101|60(1012 |86,5(101| |растениями за год |2 | |2 | |За сколько лет |4 |35 |18 | |растения вычерпали | | | | |бы запасы СО2 в | | | | |атмосфере | | | | Значение света для зеленых растений подчеркивал еще Аристотель: «Те части растений, в которых влажное не смешивается с солнечными лучами, остаются белыми». В 1777 г. Д. Пристли открыл, что растения днем выделяют кислород, очищая воздух, «испорченный» горением или дыханием животных. Сам процесс фотосинтеза был досконально изучен К.А. Тимирязевым (1843-1920). По Тимирязеву, процесс фотосинтеза протекает под воздействием содержащегося в зеленых частях растений сложного органического вещества – хлорофилла, спектр поглощения которого показан на рис. 2.7. Коэффициент использования энергии солнечного света при фотосинтезе невелик (( порядка 2 %). Поглощение 420 500 580 660 740 Длина волны, мкм Рис. 2.7. Спектр поглощения хлорофилла Усвоение СО2 растениями при фотосинтезе эндотермический процесс, который протекает с поглощением большого количества теплоты с (Н=112 ккал/моль в случае синтеза глюкозы: h( 6СО2 + 6Н2О = С6Н12О6 + 6О2 – 674 ккал. В 1961 г. за раскрытие механизма фотосинтеза американскому ученому М. Келвину присуждена Нобелевская премия. Механизм фотосинтеза такой: попадая в клетку зеленого листа, СО2 присоединяется к акцептору (углеводрибулезодифосфат), с которым продолжается дальнейшее передвижение и превращение. Благодаря ферменту альдолазы образуется глюкоза С6Н12О6, а далее – сахароза С12Н22О11, крахмал (С6Н10О5)n и другие углеводы Сn(Н2О)m. Суммарно фотосинтез можно выразить так: h( nСО2 + mН2О = Сn(Н2О)m + nО2 – Q. Фотосинтез осуществляется за счет энергии солнечных лучей (26500 млрд ккал/с на всей земной поверхности). Часть синтезированного в этом процессе вещества снова переходит к акцептору. Так и реализуется циклический процесс. Только циклические процессы могут быть саморегулирующимися (фотосинтез в их числе). Дальше с помощью других ферментов из углеводов синтезируются белки, жиры и другие нужные для жизни растений органические вещества. Следует заметить, что содержание СО2 в атмосфере невелико, и он бы полностью исчерпался за 4-35 лет (табл. 2.8.). Откуда же он поступает в атмосферу? Ежегодно все растения и животные выдыхают СО2 1013-1014 кг, а люди – 1,08(1012 кг (пункты 3,4; рис.2.5). Экзотермическая реакция окисления углерода до СО2 протекает в тканях живого организма под действием вдыхаемого кислорода, который переносится по кровеносной системе посредством гемоглобина – сложного органического вещества (с молярной массой М(68000 г/моль), содержащего 4 атома железа, каждый из которых способен связывать одну молекулу О2. Процесс дыхания упрощенно можно изобразить схематически так (где Гем – гемоглобин): 1) Гем + О2 = Гем(О2 (легкие: вдыхание); 2) Перенос с кровью в ткани; 3) Гем(О2 + С (из пищи) = Гем(СО2 (ткани); 4) Перенос в легкие; 5) Гем(СО2 = Гем + СО2((легкие: выдыхание). Таким образом, можно сказать, что гемоглобин ведет себя как катализатор. Другие источники поступления СО2 в атмосферу – извержения вулканов, кислотные дожди, действующие на известняки (пункт 8, рис. 2.5). Часть СО2 образуется при гниении, разложении, отмирании живых организмов под действием редуцентов, а также при пожарах и, наконец, при антропогенном воздействии. Так, ежегодно в промышленности и на транспорте при сжигании топлива выбрасывается в атмосферу 1,5(1012 кг СО2 и эта цифра ежегодно растет, что создает глобальную проблему - парниковый эффект. Если бы не происходило побочных процессов, то количество СО2, выделяемого в атмосферу и усваиваемого растениями, было бы одинаковым. Однако же часть углерода временно выводится из кругооборота за счет частичной минерализации останков растений (пункт 5, рис. 2.5) и животных (пункт 6, рис. 2.5) с образованием торфа, нефти, углей и других ископаемых в литосфере. Общее количество углерода земной коры (трех оболочек), по Вернадскому, составляет примерно 1(1017 т, причем большая часть его рассеяна повсюду в природе, поэтому такой разброс в данных по распределению его по отдельным формам нахождения (табл. 2.9). Таким образом, основная масса углерода принимает участие в медленном геологическом кругообороте. Естественно предположить, что в настоящее время атмосфера содержит лишь ничтожную часть СО2 от того запаса, который первоначально имелся, и углерод постепенно выводился из биологического кругооборота из-за отложений в литосфере. Но из-за антропогенных факторов (использование горючего, его сгорания) в последнее время доля СО2, а значит, и углерода в атмосфере неуклонно растет из года в год. Таблица 2.9. Количество углерода, в т | |Количество углерода, т | |Скопление | | |углерода | | | |По |По | | |Вернадскому |Г.В. Стадницком| | | |у и | | | |А.И. Родионову | | | | | |Атмосфера |3(1012 |2,35(1012 | |Океан |1(1014 |- | |Карбонатные |- |1,3(1016 | |отложения | | | |Кристаллические|- |1(1016 | |породы | | | |Известняки |3(1016 |- | |Живое вещество |1(1012 |( 5(1011 | |В растительных |- |5(1011 | |тканях | | | |В животных |- |5(109 | |тканях | | | |Каменные угли |2(1013 |- | |В каменных |- |3,4(1015 | |углях + нефти | | | Большим регулятором содержания СО2 в атмосфере является Мировой океан. Много углерода исключается из биологического кругооборота веществ на суше и попадает в океан в основном в виде карбонатных солей. Если в атмосфере повышается содержание СО2, то часть его растворяется в воде, вступает в реакцию с СаСО3, с образованием растворимых в воде гидрокарбонатов, например Са(НСО3)2. Наоборот, при уменьшении содержания СО2 в атмосфере, гидрокарбонаты, которые всегда содержатся в морской воде, превращаются в карбонаты, которые выпадают из раствора, частью используются организмами для построения скелетов или панцирей (раковин) животных, при отмирании, а частью и без отмирания в виде СаСО3 оседают на морское дно. Таким образом, существует обратимый процесс: ( уменьшение концентрации СО2 Са(НСО3)2 ( СаСО3( + Н2О + СО2 . ( увеличение концентрации СО2 2.6.2. Кругооборот кислорода Один из наиболее сложных кругооборотов, так как с кислородом О2 вступает в реакцию большое количество органических и неорганических веществ, а также водород (последний дает с О2 ( воду Н2О). Упрощенная схема кругооборота кислорода представлена на рис. 2.8). Кругооборот кислорода непосредственно связан с кругооборотом углерода (процессы фотосинтеза, дыхания и питания животных). Особенностью кругооборота кислорода является широкое многообразие кислородсодержащих веществ в биосфере. Кислород в [pic] Рис. 2.8. Кругооборот кислорода целом самый распространенный в биосфере химический элемент. В свободном виде (О2) он присутствует в наземных водных источниках, в почве и составляет основу воздуха, присутствуя в атмосфере также и в виде озона (главным образом в стратосфере). Роль озона в биосфере, его образование подробно рассматривается в других разделах пособия. В связанном виде кислород составляет основу горных пород и минералов (например, солевых и оксидных), а также газообразных продуктов (например, оксидов углерода, серы, азота и др.), и, наконец, воды (самого распространенного на планете вещества), образование которых рассматривается в других кругооборотах элементов и веществ. Нарушение стабильного кругооборота кислорода происходит в основном из- за больших объемов сжигания органического топлива (свободный кислород тратиться на окисление), а с другой стороны, из-за массовой вырубки лесов (главного источника поступления свободного кислорода в биосферу). Одновременно с этим возникает целый блок глобальных проблем (парниковый эффект, кислотные дожди, явления "смога" и др.). 2.6.3. Кругооборот серы Существуют гипотезы, что в ранние геологические эпохи Земли недостаток О2 предполагал существование серы в основном в виде Н2S и солей (главным образом, сульфидов, например FeS2). С формированием О2 начинаются окислительные процессы. В наше время сера на планете присутствует в виде Н2SО4 и Н2S (и их солей), и части свободной серы, SО2 , а также в виде органических веществ в живых организмах. Величайшую роль в кругообороте выполняют бактерии. Мы уже знакомы с фотосинтезом, но, кроме этого, некоторые бактерии, используя энергию химических экзотермических реакций окисления (хемосинтез), синтезируют органические вещества. Так под действием особого вида бактерий (серобактерии) идет окисление Н2S до S: 2Н2S + О2 ( 2Н2О + 2S + 127 ккал (+ Q). Cера откладывается в «телах» серобактерий, составляя до 95 % их общей массы, тем самым устраняя вредное действие Н2S на растения и животных. Это неполный процесс окисления серы, он идет и дальше до Н2SО4 под действием О2 воздуха, а также пурпурных бактерий, для которых дыхание заменяется процессом: бактерии Н2S + 2О2 ( Н2SО4 + 189 ккал. Сера окисляется на воздухе, а также в организмах серобактерий, если они будут лишены сероводородной среды: 2S + 3О2 + 2Н2О = 2Н2SО4 + 251 ккал, SО2 или Н2SО3 – практически не образуются, а образуется Н2SО4, так как протекают достаточно сложные процессы: 2S + 2О2 + 2Н2О = 2Н2SО3 + 157 ккал, (1) 2Н2SО3 + Н2О + O2 = 2Н2SО4 + 94 ккал. (2) Вторая реакция протекает быстрее, поэтому Н2SО3 (или же SО2 + Н2О) не накапливается. Свободная Н2SО4 в природе встречается редко (разве что при кислотных дождях), она очень активна, поэтому реагирует с содержащимися в почве и воде веществами или горными породами, например: СаСО3 + Н2SО4 = СаSО4 + СО2( + 2Н2О. Большая часть сульфатов уносится водами рек, а также под действием осадков и выветривания минералов, в моря, частью растворяясь в океанических водах, а частью откладываясь на дне в виде напластований и образуя минералы, особенно природного гипса СаSО4(2Н2О, перемещаясь в глубины литосферы, а затем через годы – на поверхность и т.д. Попадая в глубокие слои литосферы, тот же СаSО4, претерпевает восстановительный процесс, например, с участием органических веществ: СаSО4 + СН4 ( СаS + СО2( + 2Н2О ( СаСО3 + Н2S + Н2О. Таким образом, возникают сероводородные («серные») источники (например, Мацеста, Пятигорск). Но существуют и другие бактерии – сульфатовосстанавливающие, которые питаются за счет сульфатов. Так, на глубине ниже 150 м, например, в Черном море, сульфаты под действием этих бактерий восстанавливаются до сероводорода, который, поднимаясь наверх, вновь подвергается действию серобактерий, окисляется до SО42-, а часть Н2S уходит в атмосферу. Источники Н2S – болота, вулканическая деятельность, природные процессы гниения отмерших живых организмов. При извержении вулканов выделяется Н2S и SО2, концентрации которых могут быть различными, тогда возможно протекание реакции: 2Н2S + SО2 ( 3S + 2Н2О. При избытке Н2S, выделяющаяся сера защищается от окисления и потому может образовывать на некоторой глубине в толще литосферы – пласты S или вкрапления. Кроме того, на больших глубинах формируются горючие природные ископаемые (тот же уголь, и углеводороды, содержащие серу), откладываются сланцы и другие осадочные породы, содержащие серу. При добыче этих ископаемых, их сжигании или химической переработке, а также их естественном разложении в атмосферу выбрасываются SО2 и Н2S, которые окисляются до Н2SО4 и, наряду с природными источниками, затем выпадают на землю в виде осадков – кислотных дождей. И так, круг замыкается. Особенно из-за деятельности человека, а также из-за окислительной способности воздуха в наше время кругооборот осуществляется с увеличением содержания сульфатов, а в прошлом – преобладали сульфиды. Остался неучтенным процесс потребления серы растениями, с учетом которого кругооборот серы можно выразить упрощенной схемой (рис. 2.9). Переработка сульфатов растениями, в том числе и с использованием бактерий, очень сложный процесс, приводящий к синтезу растениями серосодержащих белковых веществ. Животные, питающиеся растениями, также путем биохимических процессов синтезируют серосодержащие вещества, характерные для своих организмов. При отмирании животных и растений, их белковые вещества разлагаются до Н2S и некоторых других серосодержащих продуктов, и кругооборот серы продолжается. [pic] Рис. 2.9. Кругооборот серы (упрощенно) Кругооборот серы можно представить схемой (рис. 2.10). [pic] Рис. 2.10. Кругооборот серы 2.6.4. Кругооборот азота Азот составляет примерно 78 % воздуха атмосферы. Часть его содержится в почве и в воде в виде неорганических соединений (в виде аммонийных солей, а также нитритов и нитратов), а часть – в форме органических соединений, входящих в состав растительных и животных белков, аминокислот. Существует большой кругооборот азота, включающий сушу и атмосферу, частью которого является малый кругооборот (биотический). Общая упрощенная схема кругооборота азота представлена на рис. 2.11. [pic] Рис. 2.11. Кругооборот азота (упрощенно) Биогеохимический цикл азота с учетом антропогенных факторов рассмотрим подробнее. Азот в свободном виде (в виде N2) недоступен растениям. Для своего роста растения могут использовать лишь соли азотной и азотистой кислот, хуже – аммиачные соединения. На границе воздушной атмосферы и грунта содержится от 0,02 до 0,056 кг/м3 азота (летом и осенью больше, чем зимой и весной, из-за грозовых разрядов). За год на 1 га в разных частях земли выпадает 2,6-14,3 кг азота. Больше всего азота вблизи больших химических предприятий, связанных с продуктами азота, поэтому в почву в радиусе нескольких километров азотных удобрений не следует вносить. Как же азот из воздуха попадает в почву в связанном виде? Это возможно благодаря азотофиксирующим бактериям, живущим в грунтах, а также сине-зеленым водорослям в водоемах. Поэтому их значение необычайно велико. Примерами таких бактерий являются аэробные азотобактерии (действуют в присутствии кислорода воздуха), анаэробные клостридиумы Пастера (действуют без доступа О2), клубеньковые бактерии, живущие и функционирующие в корнях- клубнях, в основном бобовых растений. Процесс фиксации таков: N2 + 3Н2 ( 2NН3 + 615,63 кДж. (или 2N) За год эти бактерии могут запасать для растений до 20 –30 кг азота. Затем начинают выполнять свои функции нитрифицирующие бактерии (упрощенно - нитритные и нитратные), окисляющие аммиак (соответственно, до азотистой и азотной кислот): 2NН3 + 3О2 ( 2НNО2 + 2Н2О + 148 ккал; 2НNО2 + О2 ( 2НNО3 + 48 ккал. Эти кислоты в процессе обменных реакций в грунтовых растворах образуют соли (нитриты и нитраты), которыми питаются растения: К2СО3 + 2НNО3 ( 2КNО3 + СО2( + Н2О. |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |