бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Полимеры

материал размягчается, т. е. лежит вне пределов рабочих режимов.

Дипольно-сегментальная и дипольная поляризация, обусловленная тепловым

движением боковых групп или отдельных групп атомов основной цепи,

сопровождаются потерями, причем наиболее заметны они на частотах 105... 109

Гц.

Диэлектрические потери вызываются не только полярными группами

макромолекулы основного вещества, но и полярными молекулами примесей,

например остатками растворителя, абсорбированной водой и т. д. Небольшие

дипольные потери наблюдаются и в неполярных полимерах, так как даже при

тщательной очистке мономеров и полимеров от полярных примесей в

макромолекулах имеются карбонильные группы, гидроксильные группы или

двойные связи, способные ориентироваться по полю.

Для полимеров, как ни для одних других диэлектриков, характерны

процессы накопления поверхностных зарядов — электризация. Эти заряды

возникают в результате трения, контакта с другим телом, электролитических

процессов на поверхности. Механизмы электризации до конца неясны- Одним из

них является возникновение при контакте двух тел так называемого двойного

слоя, который состоит из слоев положительных и отрицательных зарядов,

расположенных друг против друга. Возможно также образование на поверхности

контактирующих материалов тонкой пленки воды, в которой имеются условия для

диссоциации молекул примесей. При соприкосновении или трении разрушается

пленка воды с двойным слоем и часть зарядов остается на разъединенных

поверхностях. Электролитический механизм накопления зарядов при

контактировании имеет место в полимерных материалах, на поверхности которых

могут быть низко молекулярные ионогенные вещества—остатки катализаторов,

пыль, влага.

Технологические свойства. Принадлежность полимеров к термопластичному

или термореактивному видам во многом определяет и способы их переработки в

изделия. Соотношение их выпуска примерно 3:1 в пользу термопластичных

материалов, но следует учитывать, что термореактивные полимеры, как

правило, используются в смеси с наполнителями, доля которых может достигать

80%. Поэтому в готовых изделиях соотношение оказывается обратным: большее

их количество — реактопласты. Это объясняется высокой технологичностью

фенолформальдегидных, полиэфирных, но особенно эпоксидных смол. В

производстве последних получение полимера удается приостановить на

начальной стадии, когда молекулярная масса составляет всего 500 ... ...

1000. Такие вещества "по длине цепи средние между мономерами и полимерами,

обладающие низкой вязкостью, называются олигомерами. Именно их появление

произвело в б0-е годы переворот в технологии переработки полимеров в

изделия, которая раньше основывалась на применении давления.

Достоинство олигомеров — низкая вязкость — дает возможность формования

изделий при минимальном усилии прессования или вообще без него, под

действием собственного веса. Более того, даже в смеси с наполнителями

олигомеры сохраняют текучесть, что позволяет набрасывать материал на

поверхность макета, не применяя давления, получать детали крупных размеров

сложной формы. Низкая вязкость олигомеров позволяет также пропитывать листы

ткани, а их склеивание под прессом и отверждение лежит в основе

производства слоистых пластиков—оснований печатных плат. Олигомеры как ни

один полимер подходят для пропитки и наклейки компонентов, особенно когда

применение давления недопустимо. Для снижения вязкости в олигомер можно

вводить добавки, которые способствуют повышению пластичности, негорючести,

биологической стойкости и т, д.

Применяемая для этих целей смола чаще всего является смесью различных

веществ, которую не всегда удобно готовить на месте, на предприятии-

потребителе, из-за необходимости смесительного и дозирующего оборудования,

пожароопасности, токсичности и других ограничений. Поэтому широкое

распространение получили компаунды—смеси олигомеров с отвердителями и

другими добавками, полностью готовые к употреблению и обладающие при

обычной температуре достаточной жизнестойкостью. Компаунды—жидкие или

твердые легкоплавкие материалы—формируются в изделие, после чего при

повышенной температуре проводится отверждение и образование

пространственной структуры.

Если изделия на основе термореактивных смол получают методом горячего

прессования, то композиция, содержащая кроме смолы еще рубленое

стекловолокно или какой-либо порошкообразный наполнитель и другие добавки,

готовят заранее, и она поступает потребителю в виде гранул или порошка,

называемых прессовочным материалом (иногда — пресс-порошком). Несколько

отличаются от него меньшей степенью полимеризации префиксы и препреги,

которые благодаря их меньшей вязкости лучше заполняют прессовочные формы.

Технологические свойства как термореактивных, так и термопластичных

полимеров характеризуются текучестью (способностью к вязкому течению),

усадкой (уменьшением линейных размеров изделий по отношению к размерам

формующего инструмента), таблетируемостыо (пресс-порошков).

Выше было отмечено, что олигомеры, расплавы и растворы термопластичных

полимеров являются вязкотекучими, так называемыми неньютоновскими

жидкостями. Их вязкость зависит не только от природы вещества и

температуры, как в ньютоновских жидкостях, но и от других факторов,

например толщины слоя. Это—проявление эффекта вязкопластичности, который

приводит, например, к тому, что краска, нанесенная на поверхность, стекает

не в тонком слое, а в более толстом. Другое проявление необычных свойств

так называемых псевдопластичных жидкостей— уменьшение вязкости с

увеличением скорости сдвига. Этот эффект характерен для растворов и

расплавов большинства полимеров и объясняется тем, что с увеличением

скорости течения асимметричные частицы постепенно ориентируются, в

результате вязкость убывает до тех пор, пока сохраняется возможность все

более полной ориентации. Кривые, характеризующие зависимость вязкости г\ от

скорости V, называются реологическими (реология—наука о течении в жидкостях

под действием внешних сил).

Необычные свойства смесей жидких смол с мелкодисперсными

наполнителями, частицы которых имеют асимметричную форму

(тальк, слюдяная мука, аэросил-коллоидный SiO2), проявляются в том,

что в спокойном состоянии они обладают высокой вязкостью, свойственной

гелям, а при механическом воздействии (перемешивании или встряхивании)

переходят в жидкое состояние. Смеси, обладающие этим свойством, называются

тиксотропными. Тиксотропные компаунды нашли широкое применение для защиты

радиодеталей наиболее простым методом — окунания. Вязкость компаунда

снижают с помощью вибрации (нагрев не требуется). При извлечении детали из

жидкой смеси с одновременным встряхиванием избыток ее стекает, а оставшаяся

часть ее после извлечения вновь гелирует, образуя равномерное по толщине

покрытие, не содержащее пузырей и вздутий, так как изделие и компаунд не

нагреваются. Тиксотропные свойства некоторых полимерных композиций

используют также при изготовлении специальных красок и клеев.

ПЛАСТМАССЫ

Пластмассы (пластики)—материалы на основе полимеров, находящиеся в

период формования изделий в вязкотекучем или высокоэластическом состоянии,

а при эксплуатации—в стеклообразном или кристаллическом. В пластмассе

наряду с полимером могут содержаться наполнители, причем в термопластичные

их вводят реже и в меньших количествах, чем в термореактивные. Поэтому

понятия термопластичный полимер, «термопласт», «пластик», обычно совпадают.

Основой так называемых «ненаполненных» термопластов являются полимеры,

структура которых почти полностью формируется при их синтезе в условиях

специализированного химического производства. Возможности регулирования их

свойств на стадии изготовления изделий состоят в несущественных изменениях

структуры, путем отжига или ориентации, стабилизации и пластификации с

помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к

полимерам являются:

. стабилизаторы, повышающие стойкость к термоокислительным процессам,

воздействию излучения, микроорганизмов и т. п.;

. пластификаторы и эластификаторы, повышающие текучесть в

вязкотекучем состоянии и эластичность в стеклообразном

(ударопрочность);

. легирующие полимеры, изменяющие степень кристалличности, структуру

и свойства матрицы;

. пигменты для окрашивания.

Один из основных признаков термопластов: наличие двух твердых

состояний — стеклообразного и высокоэластического — и

жидкого—вязкотекучего. Оба перехода—плавление и стеклование являются

плавными, нерезкими, и механические свойства почти непрерывно и обратимо

изменяются при изменении температуры.

Отмеченная выше особенность химической структуры термопластов

определяет их свойства—гибкость цепей и возможность смены конформаций, что

и объясняет существование в них нового высокоэластического состояния,

характерного для широкого диапазона температур.

Первым термопластом, нашедшим широкое применение, был

целлулоид—искусственный полимер, полученный путем переработки

природного—целлюлозы. Он сыграл большую роль в технике, особенно в

кинематографе, но вследствие исключительной пожароопасности (по составу

целлюлоза очень близка к бездымному пороху) уже в середине XX в. ее

производство упало почти до нуля.

Развитие электроники, телефонной связи, радио настоятельно требовало

создания новых электроизоляционных материалов с хорошими конструкционными и

технологическими свойствами. Так появились искусственные полимеры,

изготовленные на основе той же целлюлозы, названные по первым буквам

областей применения этролами. В настоящее время лишь 2 ... 3% мирового

производства полимеров составляют целлюлозные пластики, тогда как примерно

75%—синтетические термопласты, причем 90% из них приходится на долю только

трех: полистирола, полиэтилена, поливинилхлорида.

Полистирол—неполярный полимер, широко применяющийся в электротехнике,

сохраняющий прочность в диапазоне 210 ... ... 350 К. Благодаря введению

различных добавок приобретает специальные свойства: ударопрочность,

повышенную теплостойкость, антистатические свойства, атмосферостойкость,

пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к

действию органических растворителей (толуол, бензол, четыреххлористый

углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он

набухает).

Полистирол вспенивающийся широко используется как

теплозвукоизоляционный строительный материал. В радиоэлектронике он находит

применение для герметизации изделий, когда надо обеспечить минимальные

механические напряжения, создать временную изоляцию от воздействия тепла,

излучаемого другими элементами, или низких температур и устранить их

влияние на электрические свойства (tg6, е), следовательно, — в бортовой и

СВЧ-аппаратуре.

Полиэтилен—полимер с чрезвычайно широким набором свойств и

использующийся в больших объемах, вследствие чего его считают королем

пластмасс. Регулируя степень кристаллизации, условия синтеза и добавки,

прочность полиэтилена можно варьировать в пределах 8 ... ]5 ГПа, а

относительное удлинение 500 ... 100%. Полиэтилен обладает исключительно

высокой стойкостью против химической деструкции: даже за 10... 12 лет

эксплуатации прочность его снижается лишь на ј. Благодаря химической

чистоте и неполярному строению полиэтилен обладает высокими

диэлектрическими свойствами: его удельное сопротивление 1014 ... 1016

Ом*см. tg [pic]=0,0005. Епр==30 МВ/м. Они в сочетании с высокими

механическими и химическими свойствами обусловили широкое применение

полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.

Помимо полиэтилена общего назначения выпускаются его многие

специальные модификации, среди которых: антистатический, с повышенной

адгезионной способностью, светостабилизированный, самозатухающий,

ингибитированный (для защиты от коррозии), электропроводящий (для

экранирования).

Одним из наиболее прогрессивных методов обработки полиэтилена является

радиационное сшивание, происходящее под действием пучков ускоренных

электронов. Такое воздействие приводит к существенному увеличению прочности

на растяжение и модуля упругости, твердости, термостойкости и возникновению

эффектов памяти и термоусаживания. Эти эффекты находят все более широкое

применение в технологии. Изделие, например трубку или пакет, облучают

электронами, раздувают горячим воздухом при 423 К- Затем трубку насаживают

на штуцер или в пакет, упаковывают продукцию. После этого достаточно

небольшого нагрева, и полиэтилен, «вспомнив» первоначальную форму, дает

большую усадку, в результате которой образуется прочное надежное соединение

трубка—штуцер, а пакет плотно облегает продукцию. Достоинство радиационной

обработки состоит в том, что она не требует больших затрат энергии и не

загрязняет материал. Она применяется в кабельной промышленности и при

изготовлении различных узлов РЭА.

Главный недостаток полиэтилена—сравнительно низкая нагревостойкость.

Фторопласт (политетрафторэтилен—ПТФЭ)—один из самых термостойких и

холодостойких полимеров, сохраняет механическую прочность в интервале 3 ...

600 К. Плотность — 2,2 ... 2,5 г/см3, относительное удлинение 250 ... 500%,

температура разложения не менее 673 К; ТКЛР при температуре 293 К — 2,5*10-

5 К-1; при Т==383 К — 1*10-4 К-1. Удельное сопротивление (1038 ... 1020

Ом*см) мало зависит от влажности и температуры. Так, при Трабмах (573 К)

оно снижается лишь в 100 ... 1000 раз; tg[pic] фторопласта равен 0,0002,

Јnp=40 ... 80 МВ/м. Исключительно высока его химическая стойкость, в том

числе длительная к воздействию морского тумана, солнечной радиации,

плесневых грибков. По отношению к большинству неорганических и органических

реагентов он настолько пассивен, что методы испытаний на стойкость в этих

средах отсутствуют. Фторопласт обладает также высокой радиационной

стойкостью и применяется для изоляции проводов на атомных электростанциях.

Такие провода можно использовать и в качестве нагревателей, погруженных

непосредственно в растворы кислот и щелочей. Они не боятся попадания масел,

керосина, гидравлических жидкостей при повышенных температурах и широко

применяются для изоляции бортовых авиационных кабелей. Обладают они

преимуществом и при эксплуатации в разреженной атмосфере, где условия

теплоотвода ухудшены. У фторопласта незначительна зависимость

диэлектрической проницаемости от температуры, поэтому он фазостабилен — не

изменяет электрическую длину в широком диапазоне температур и частот. Это

позволяет использовать его в РЭА с фазово-импульсной модуляцией, РЛС и

измерительных фазочувствительных системах. Негорючесть фторопласта

характеризуется тем, что он способен загораться только в чистом кислороде,

а это резко отличает его, например, от полиэтилена; теплота сгорания

невелика—в 10 раз меньшая, чем полиэтилена; плавления при горении нет,

фторопласт в пламени лишь обугливается; при горении или тлении образуется

немного дыма (но дым содержит ядовитый фторфосген, поэтому при температуре

выше 773 К фторопласт опасен); фторопласт горит в открытом пламени, но

после его удаления горение прекращается, т. е. он неспособен распространять

горение. При нагреве в вакууме фторопласт не выделяет газообразных

продуктов, и его можно использовать как подложки тонкопленочных ГИС. Эти

качества свидетельствуют о том, насколько незаурядным материалом является

фторопласт, а также и о том, чего в будущем можно ожидать от полимеров.

У фторопласта есть недостатки, которые вполне естественно продолжают

его достоинства.

1. Вследствие химической пассивности он также и адгезионно инертен,

т.е. трудно поддается склеиванию. Однако способы преодоления этой

инертности уже найдены. Это либо обработка в расплаве окислителей

при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря

этому выпускаются фольгированные фторопластовые пленки и пленки с

односторонним липким слоем.

2. В отличие от типичных термопластов фторопласт при повышении

температуры не переходит в вязкотекучее состояние и его нельзя

перерабатывать в экструдерах, так как вязкость его при 626 К

(350°С) все еще высока—около 1010 Па-с. Поэтому пленку готовят

значительно более дорогим методом строжки на прецизионных токарных

станках.

3. Фторопласт обладает ползучестью и плохо работает под нагрузкой.

Механические свойства его могут быть улучшены путем радиационного

модифицирования и армирования стекловолокном.

Полиимид — новый класс термостойких полимеров, ароматическая природа

молекул которых определяет их высокую прочность вплоть до температуры

разложения, химическую стойкость, тугоплавкость. Полиимидная пленка

работоспособна при 473 К (200°С) в течение нескольких лет, при 573 К—1000

ч, при 673 К—до 6 ч. Кратковременно она не разрушается даже в струе

плазменной горелки. При некоторых специфических условиях полиимид

превосходит по температурной стойкости даже алюминий. Так, если к пленке

или фольге прикасаются нагретым стержнем и определяется температура, при

которой образец разрушается за 5 с (температура нулевой прочности), то для

алюминия она составляет 788 К, для полиимида—1088 К.

Полиимид, в отличие от фторопласта, легко подвергается травлению в

концентрированных щелочах, что позволяет готовить сквозные отверстия в

пленке. Таким методом получают электрические переходы при формировании

многослойных коммутационных плат на полиимидной пленке. Чтобы использовать

ее как подложку для вакуумного напыления тонкопленочных проводниковых слоев

(обычно Cr—Си), необходима предварительная обработка — активация

поверхности с целью преодоления ее адгезионной инертности- Активация

представляет, по существу, частичную деструкцию или модификацию внешних

слоев с образованием ненасыщенных адсорбционно-способных связей.

Достигается это в результате воздействия концентрированного (около 250 г/л)

раствора NaOH с добавкой жидкого стекла при 353 К (80 °С). Возможна и

активация поверхности полиимида в плазме тлеющего разряда в атмосфере

кислорода, однако такой обработки недостаточно для надежной металлизации,

особенно если платы в процессе дальнейшей обработки и эксплуатации

подвергаются изгибам. Полиимид вполне стабилен при нагреве в вакууме,

поэтому его используют как подложки гибких тонкопленочных коммутационных

плат (резистивные элементы на таких подложках не изготавливают). В отличие

от фторопласта полиимид пригоден и для многослойных плат благодаря тому,

что позволяет изготовлять переходные отверстия диаметром 70 ... 100мкм.

Полиимид является слабополярным среднечастотным материалом, поскольку

его tg[pic]=0,003. Полиимид обладает повышенным влагопоглощением, и,

вероятно, поэтому диэлектрические потери уменьшаются с повышением

температуры: так, при 493 К его tg[pic]=0,0006. Полиимид выпускается в

различных видах:

1. Пленка толщиной 8 ... 100 мкм, в том числе фольгированная,

предназначенная для гибких печатных плат, шлейфов и подложек

тонкопленочных ГИС.

2. Лак ПАК, стойкий после высыхания при 470 ... 520 К, ограниченно при

573 К, кратковременно при 670 К.

3. Пресс-материал для получения изделий горячим прессованием при 590 К

и давлении 100 МПа.

4. Пенопласт (пенополиимид) с плотностью 0,8 ... 2,5 г/см5,

применяющийся в качестве тепло- и электроизоляционного материала

для температур 90 ... 520 К-

5. Стеклопластик на основе полиимида, стойкий до 670 К, и углепластик,

не теряющий механической прочности при 550 К.

6. Изоляционная лента, стойкая при температуре до 500 К.

Недостаток полиимида—повышенное влагопоглощение (1 ... 3% за 30 сут.),

поэтому он нуждается в технологической сушке (особенно при изготовлении

изделий из пресс-порошков) и защите.

Первыми реактопластами, полученными около 100 лет назад, были

фенолформальдегидные смолы (ФФС). Компонентами этих смол являются фенол и

формальдегид, реакция поликонденсации которых происходит при нагреве до 450

.. - 470 К. Известны два типа ФФС— резольные и новолачные, несколько

отличающиеся по свойствам. Исходным сырьем для ФФС является каменный уголь,

что и объясняет дешевизну и постоялый рост производства, особенно в виде

теплоизоляционных пенопластов для строительной промышленности. В

электронике ФФС широко применяются для изготовления слоистых пластиков,

покрытий и красок (лак на основе ФФС называется бакелитовым), деталей

электроизоляционной аппаратуры, сепараторов аккумуляторов и т. д.

Удельное сопротивление отвержденной ФФС — 1012 ... ... Ю13 Ом-

см, tg[pic]= 0,015 при f=106 Гц, электрическая прочность 10 ... 18 МВ/м,

[pic]=10 ... —11 (50 Гц) и[pic]=6 (106 Гц). Диапазон рабочих температур 210

... 470 К. Композиции на основе ФФС и рубленного углеродного волокна

(углепрессволокнит) обладают повышенной нагревостойкостью — кратковременно

до 800 К. Широко применяются в радиоэлектронике гетинакс и

текстолит—слоистые пластики на основе ФФС с бумажным и тканевым

наполнителями. Недостатки ФФС—хрупкость, высокая вязкость олигомеров и

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.