бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Источники и особенности радиационного загрязнения окружающей среды

Источники и особенности радиационного загрязнения окружающей среды

Федеральное агентство по образованию

Государственное учреждение высшего профессионального образования

Санкт-Петербургский Торгово-Экономический Институт

Кафедра Физического Воспитания и БЖД

Реферат

на тему:

«Источники и особенности радиационного загрязнения окружающей среды»

Выполнил: студент группы 343 Бичан Георгий

Проверил: Волокобинский М.Ю.

СПб.

2008

CОДЕРЖАНИЕ

1. ОСНОВНЫЕ ИСТОЧНИКИ РАДИОЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ

2, ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА. БИОЛОГИЧЕСКИЕ АСПЕКТЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

3. СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ РАДИАЦИОННОГО МОНИТОРИНГА

1. ОСНОВНЫЕ ИСТОЧНИКИ

АДИОЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ

Источники радиации разделяют на естественные и искусственные (техногенные), созданные человеком. Ниже описываются основные источ-ники ионизирующего, излучения (ИИЙ), а также тот вклад, который они вносят, в среднем, в облучение населения.

Космическая радиация и космические радионуклиды. Космическое пространство пронизывается ионизирующим излучением различного про-исхождения и энергии. Первичная космическая радиация солнечного или галактического происхождения состоит, в основном, из протонов с энерги-ей, изменяющейся в очень широком диапазоне. Вторичная космическая радиация включает продукты взаимодействия первичной радиации и атмо-сферы Земли. Глобальная годовая эффективная доза от космической ра-диации на одного человека составляет около 0,38 мЗв (38 мбэр), однако сильно зависит от абсолютной высоты (например, около 0,27мЗв (27 мбэр) на уровне моря (г. Мехико) и около 2 мЗв (200 мбэр) на высоте 3,9 км над уровнем моря (Ла-Пас, Боливия)). Космическое излучение в результате взаимодействия с элементами в атмосфере образует разнообразные радио-нуклиды. Наиболее значимым является углерод-74, который, попадая в ор-ганизм, приводит к образованию годовой индивидуальной эффективной дозы около 0,012мЗв (1,2мбэр) [1].

Земная радиация. Только долгоживущие радионуклиды с периодом полураспада, соизмеримым с возрастом Земли, до сих пор существуют в ее веществе. Воздействие земной радиации может осуществляться тремя пу-тями: прямое воздействие внешнего облучения, внутреннее облучение при потреблении пищи и внутреннее облучение при вдыхании воздуха. Годо-вая индивидуальная эффективная доза от внешнего облучения составляет около 0,46мЗв (46мбэр), хотя эта величина может значительно изменяться в зависимости от местных геологических условий; в некоторых регионах доза может оказаться больше в 10 раз, а для ряда ограниченных террито-рий - в 100 раз. Доза, вызванная поступлением естественных радионукли-дов из воздуха, продуктов питания и воды (исключая вдыхания радона), составляет около 0,23 мЗв (23 мбэр); калий-40 вместе с радионуклидами уранового и ториевого рядов составляет около 75% от этой дозы. Доза от калия-40 варьируется обычно незначительно, тогда как доза от урана и то-рия может изменяться значительно [2]

Радон представляет собой наиболее опасный природный источник радиации [3]. Он является инертным газом и представлен двумя изотопа-ми: радоном-222, радиологически наиболее значимым (продукт распада радия-226), и радоном-226, который часто называют тороном (продукт распада радия-225). Уровень концентрации радона в помещениях зависит от скорости его образования, определяемой концентрацией радия-226 в почве и других материалах, а также от интенсивности, с которой он пере-носится в воздух помещений и удаляется из них. На эти процессы влияют многие факторы (местные геологические условия, характеристики почвы, строительные материалы, тип постройки, тип вентиляционной системы и т.д.). В зависимости от этих факторов эффективная доза от вдыхания радо-на-222 и его дочерних продуктов оценивается в 1,2 мЗв (120 мбэр) и при-мерно в 0,07 мЗв (7 мбэр) - от вдыхания торона. Однако в некоторых гео-графических районах индивидуальная доза может в 10 раз превышать среднюю. Особенности геологического строения земной коры в регионе, а также тип постройки могут оказаться причиной увеличения дозы внутри помещения в несколько сот раз по сравнению со средними значениями. Поэтому снижение поступления радона в помещение является одной из главных задач в области радиационной экологии.

Основным путем решения этой задачи является оценка потенциаль-ной радоноопасности территорий застройки с целью определения требуе-мой радонозащиты зданий и сооружений. Концептуально подход к оценке потенциальной радоноопасности очевиден. Он должен быть основан на анализе фактических значений объемной активности (OA) радона в возду-хе помещений, изучении зависимости между плотностью потока радона с поверхности грунта и OA радона в помещениях и, наконец, установлении закономерностей процесса выделения радона с поверхности земли.

Искусственные источники. Определение групп населения, подвер-гающихся воздействию облучения от искусственных источников, и оценка степени этого облучения производятся исходя из сведений о способе про-изводства этих источников и характере их использования. Персонал, непо-средственно связанный с производством и применением источников ра-диации, подвергается воздействию облучения в процессе работы. Населе-ние подвергается как прямому (например, в медицине), так и косвенному (например, в результате выброса радиоактивных материалов в окружаю-щую среду при штатной работе ядерных установок или в аварийных си-туациях) воздействию.

В медицине ионизирущее излучение широко применяется как для диагностики, так и при лечении травм и заболеваний (рис.1). Индивиду-альная годовая эффективная доза в Европе при диагностике (рентгеновское излучение при медицинских обследованиях) составляет около 1,1 мЗв (ПО мбэр). Средние дозы в европейских странах сильно меняются (от 0,4 до 1,6 мЗв, или 40-160 мбэр). Индивидуальная эффективность терапии составляет около 0,7 мЗв (70 мбэр) (исключая воздействие на органа или ткани, спе-циально подвергшиеся терапии) и значительно меняется по странам.

Атмосферные испытания ядерного оружия. Атмосферные испы-тания ядерного оружия начались в 1945 г. и продолжались до 80-х гг.; бо-лее интенсивные периоды испытаний приходились на 50-е годы и начало 60-х годов. В результате таких испытаний в атмосферу были выброшены огромные количества радиоактивных продуктов. Прежде чем выпасть на земную поверхность, они равномерно рассеялись в стратосфере в глобаль-ном масштабе. Во время испытаний ядерного оружия в атмосферу выбра-сывались самые разнообразные продукты деления, образовавшиеся при взрыве, но современное глобальное загрязнение представлено наиболее долгоживущими радионуклидами. В основном это цезий-737 и стронций-90, имеющие период полураспада около 30 лет. Наиболее значительное облучение происходило в периоды испытаний ядерного оружия; с прекра-щением испытаний в 60-х гг. оно сильно уменьшилось. Индивидуальная годовая эффективная доза в 7996 г. на 40-50° северной широты (где уровни глобального загрязнения самые высокие) составляет около 0,009 мЗв (0,9 мбэр); при этом основной вклад вносит цезий-757 [4].Удобрения. Большинство разрабатываемых фосфатных месторождений содержат уран в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон. Удобрения также радиоактивны и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиоактивное загрязнение в этом случае обычно незначительно, но возрастает, если удобрения вносят в землю в жидком виде или содержащие фосфаты вещества скармливают скоту.

Другие источники. К другим источники облучения относится про-изводство атомной энергии в мирных и военных целях, исключая топлив-ный цикл (добыча урана, его обогащение, изготовление топлива, работа реактора, регенерация топлива и т.д.), производство ядерного оружия и ра-диоизотопов, падение спутников с ядерными двигателями, использование промышленных источников радиации (например, промышленная радио-графия, стерилизация, скважинный каротаж) и т.д. В целом, за исключени-ем крупных аварий (таких как Чернобыльская), влияние этих источников на формирование полной индивидуальной дозы по сравнению с другими источниками облучения невелико. По состоянию на конец 80-х - начало 90-х гг. годовая индивидуальная эффективная доза, вызванная производст-вом атомной энергии, оценивается в 0,1 мкЗв, а вызванная производством радиоизотопов - в 0,02 мкЗв. Несколько более высокие дозы получают лю-ди, проживающие вблизи ядерных установок. Так, проживающие вблизи работающих ядерных реакторов, могут получить дозу до 1-20 мкЗв, про-живающие вблизи крупных регенерационных установок - до нескольких сот мкЗв (несколько десятков мбэр). Источником облучения являются и многие общеупотребительные предметы, содержащие радиоактивные ве-щества. Едва ли не самый распространенный - часы со светящимся цифер-блатом. Они дают годовую дозу, в 4 раза превышающую обусловленную утечками на АЭС. Обычно при изготовлении таких часов используют ра-дий, что приводит к облучению всего организма, хотя на расстоянии 1 мот циферблата излучение в 10 ООО слабее, чем на расстоянии 7 см. Сейчас пы-таются заменить радий тритием, облучение от которого меньше. Радиоак-тивные изотопы используют также в светящихся указателях входа-выхода, компасах, телефонных дисках, прицелах и т.д.

При изготовлении особо тонких оптических линз применяют торий, который может привести к существенному облучению хрусталика глаза. Для придания блеска искусственным зубам широко используется уран, ко-торый может служить источником облучения тканей полости рта.

Источниками рентгеновского излучения являются цветные телеви-зоры, однако при правильной настройке и эксплуатации дозы облучения от современных их моделей ничтожны. При ежедневном просмотре передач по 4 ч доза за год составит 7 мбэр. Рентгеновские аппараты для проверки багажа пассажиров в аэропортах также практически не вызывают облуче-ния пассажиров.

Расчетные годовые дозы облучения человека показаны на рис.2 [5].

В результате реализации в послевоенные десятилетия широкомас-штабных программ использования атомной энергии в целях развития во-енной техники и мирных технологий существенно возросло влияние ан-тропогенных источников радиоактивных загрязнений окружающей среды.

земная радиация

космическая радиация

Рис.. Расчетные годовые дозы облучения человека: 1- космические лучи (0,37мЗв); 2 - радионуклиды (0,015 мЗв); 3 - калий-*0 (0,33 мЗв); 4 - другие элементы (из серии V-238, Th-232) (0,4мЗв); 5-радон (1,3 мЗв); 6 - рубидий 87 (0,006мЗв)

Так, только на Центральном (Новая Земля) и Семипалатинском ис-пытательных полигонах за это время было произведено 586 ядерных взры-вов (атмосферных, подводных и подземных). Общее же количество ядер-ных испытаний и взрывов за период с 1949 по 1990 годы составило 715 [б].

По данным Госатомнадзора России, в настоящее время на террито-рии России расположено свыше 60 радиационно-опасных для населения и окружающей среды промышленных объектов, главным образом, предпри-ятий ядерно-топливного и ядерно-оружейного циклов. К концу 1993 года на территории России работало 9 атомных электростанций с 29 энергобло-ками и реакторами различных типов. На Европейской части России атом-ными электростанциями вырабатывается около 25% всей электроэнергии. Поскольку более эффективной альтернативы атомной энергетике в на-стоящее время нет, в ближайшей перспективе предусматривается увеличе-ние доли атомных электростанций в выработке электроэнергии до 35-37 %.

С ростом количества ядерных реакторов и взаимодействующих с ними обогатительных комбинатов повышается опасность того, что число стран, владеющих ядерным оружием, увеличивается [7]. Именно по этой причине была создана международная организация под эгидой ООН-МА-ГАТЭ (Международное Агентство по Атомной Энергии). Потенциал раз-рушающего военного применения ядерных технологий привел обществен-ность к учреждению дорогого и сложного органа контроля.

Вместе с тем, атомные электростанции являются потенциальными источниками катастрофической радиоэкологической опасности - особен-но в случае запроектных аварий с разрушением активной зоны реакторов (6-7-й класс по шкале МАГЛТЭ). Примером такой аварии является авария на Чернобыльской АЭС (1986 г.) (рис.3), приведшая к крупномасштабным загрязнениям окружающей среды в 12 областях с населением более 5 млн.' человек только на территории Российской Федерации, большим матери-альным потерям, серьезным медико-биологическим и социально-экономи-ческим последствиям. Суммарная активность всего радиоактивного мате-риала, выбросы которого произошли во время аварии, в настоящее время составляет, согласно оценкам, около 12»1018 Бк, включая около 6-7»1018 Бк активности инертных газов (количество конкретного радионуклида выра-жается количественной величиной "активность", которая соответствует числу спонтанных ядерных превращений, испускающих излучение в еди-ницу времени). В выбросах содержалось около 3-4% топлива, находивше-гося в реакторе во время аварии, а также до 100% инертных газов и 20-60% летучих радионуклидов. Эта современная оценка активности содержаще-гося в выбросах материала превышает оценку активности, предложенную СССР, которая была сделана на основе суммирования активности мате-риала, выпавшего на территории стран бывшего СССР [8]. Тридцатикило-метровая зона повышенного риска вокруг Чернобыля обрекла город на не-определенное будущее без каких-либо надежд на восстановление внутри десятикилометровой зоны. По подсчетам советского правительства, ущерб от катастрофы составил более 14 миллиардов долларов. Западные источ-ники называют более высокие цифры [9]. По официальным данным, к ап-релю 2000 года количество погибших в результате Чернобыльской катаст-рофы составило порядка 55 ООО человек. По масштабам воздействия на ок-ружающую среду, здоровье и экономику Чернобыль также остается самой большой аварией в истории атомной индустрии.

Значительную группу радиационно-опасных объектов составляют объекты Минобороны России, в том числе атомные подводные лодки и специальные виды вооружений.

В процессе функционирования радиохимических предприятий, атомных реакторов АЭС, судов атомного флота и некоторых других ядерно-физических установок образуется большое количество радиоактивных отходов и отработанных материалов. Интенсивность накопления радиоак-тивных отходов возрастает в связи с истечением плановых сроков эксплуа-тации энергетических ядерных реакторов, снятием с вооружения большого количества атомных подводных лодок и ликвидацией значительного коли-чества ядерных боеголовок.

Проблема безопасного обращения с радиоактивными отходами и на-дежной защиты биосферы от их воздействия до сих пор не нашла удовле-творительного решения. Временные хранилища, в которых они сегодня находятся, не всегда отвечают требованиям безопасности.

Так, в результате ряда инцидентов, связанных с неудовлетворитель-ным обращением с радиоактивными отходами в Челябинском производст-венном объединении "Маяк", оказались существенно загрязненными не-сколько районов Челябинской и Свердловской областей, в которых прожи-вает более полумиллиона человек. Аналогичная ситуация имела место и в г. Виндскейл (переименован в Сэллафилд) в Великобритании [10]. Поэто-му хранилища радиоактивных отходов и места их захоронения требуют тщательного наблюдения и контроля как потенциальные высокоактивные источники радионуклидного загрязнения среды.

Старение оборудования, финансовые и материально-технические трудности в проведении плановых профилактических и ремонтных работ, снижение уровня технологической дисциплины, отток квалифицирован-ных кадров приводят к повышению вероятности возникновения аварийных ситуаций на радиационно-опасных объектах.

Внедрение радиационных технологий и методов в промышленность, медицину и науку привело к широкому распространению радиоизотопных источников. В настоящее время примерно в 13 тысячах учреждений и предприятий эксплуатируются источники ионизирующих излучений. Об-щее их количество по данным Госатомнадзора России превышает 700 ты-сяч единиц, а активность некоторых из них достигает десятков кКюри. Как свидетельствует международная практика, такие источники могут быть причиной серьезных радиационных ситуаций, причиняющих значитель-ный вред здоровью населения и окружающей среде. Социально-поли-тические и экономические изменения в стране создали дополнительные предпосылки для возникновения радиоэкологических ситуаций, связанных с попаданием радиоактивных веществ этих источников в окружающую среду в результате небрежного обращения с ними или преднамеренного вскрытия изотопных источников.

Во все более возрастающих масштабах осуществляются перевозки радиационно-опасных грузов по территории страны, в том числе в связи с реализацией программы частичного уничтожения ядерного оружия в соот-ветствии с международными договоренностями. Существенное увеличение общего числа случаев нарушения правил безопасности на транспорте, от-мечаемое в последнее время в стране из-за падения уровня трудовой и тех-нологической дисциплины, требует повышения эффективности радиацион-ного контроля на транспорте.

В настоящее время создалась реальная угроза радиоактивного заг-рязнения морей в экономической зоне страны. В декабре 1992 года Россия официально признала факты захоронения радиоактивных отходов и отра-ботанных ядерных реакторов атомных подводных лодок и ледоколов на дне морей. По состоянию на начало 1993 года в 20 местах захоронения в Баренцевом, Охотском, Карском и Японском морях затоплено 17 ядерных реакторов, несколько сотен контейнеров с радиоактивными отходами и слиты тысячи кубометров жидких радиоактивных отходов. Радиоактивное загрязнение омывающих Россию морей обусловлено также сбросами и за-хоронениями радиоактивных отходов Японией (Японское море), Англией, Францией и Бельгией (Балтийское, Баренцево и Карское моря). Контроль-ные замеры, проводимые радиологическими службами Северного и Тихо-океанского флотов, фиксируют превышения фоновых уровней по цезию-137 до 10-15 раз, а также появление других техногенных радионуклидов (например, кобальт-60), что может быть связано с процессами разрушения конструкционных элементов затопленных реакторов с невыгруженным то-пливом. Следует отметить, что официальное признание фактов морских захоронений и сливов радиоактивных отходов означает и принятие Росси-ей ответственности за ликвидацию их возможных последствий.

Одним из источников возможных радиационных загрязнений терри-тории страны являются трансграничные (главным образом атмосферные) переносы радиоактивных веществ с сопредельных территорий. Примером могут быть систематически фиксируемые выпадения радиоактивных за-грязнений в различных местах нашей территории после проведения про-должающихся до сих пор испытательных ядерных взрывов на полигоне Лобнор, расположенном на примыкающей территории Китая. Всего там было произведено около 50 ядерных взрывов [11].

Радионуклидное загрязнение окружающей среды происходит также в результате проникновения в нее и радионуклидов естественного проис-хождения. К источникам таких загрязнений и соответствующих дозовых нагрузок на население относятся тепловые электростанции, работающие на угле. По данным сравнительных исследований, уровни дозовых нагрузок от этих станций могут в десятки раз превышать уровни, создаваемые атом-ными станциями при их нормальной эксплуатации. Активность радионук-лидных выбросов крупных электростанций, работающих на угле, состав-ляет от 8 до 20 Кюри в сутки.

Источниками радиоактивного загрязнения, территорий и поверхно-стных вод естественными радионуклидами являются также отвалы горных пород на горнодобывающих и перерабатывающих предприятиях. Причем радиоэкологическую опасность представляют не только предприятия по добыче и переработке расщепляющихся материалов, но и предприятия до-бычи неурановых руд и органических энергоносителей. Отмечены случаи крупномасштабных радиационных загрязнений естественными радионук-лидами в районах добычи нефти и газа (например, на нефтепромыслах Ставропольского края). Добавим к этому усиливающуюся политическую нестабильность в мире. Все это означает, что вторая глобальная авария АЭС чернобыльского масштаба может случиться в пределах 10-20 лет [12]. Это вызывает необходимость организации действенного контроля за тех-ногенным проникновением радионуклидов естественного происхождения в биосферу.

Таким образом, представленные материалы позволяют констатиро-вать, что опасность, которую представляет собой ионизирующее излуче-ние, обуславливает необходимость осуществления не просто контроля, а непрерывного наблюдения (мониторинга), как за источниками ионизи-рующих излучений, так и за их распространением в окружающей среде.

2, ВОЗДЕЙСТВИЕ РАДИАЦИИ НА ЧЕЛОВЕКА.

БИОЛОГИЧЕСКИЕ АСПЕКТЫ РАДИАЦИОННОЙ

БЕЗОПАСНОСТИ

Жизнь на Земле возникла и развивалась на фоне ионизирующей ра-диации. Поэтому биологическое действие ее не является каким-то новым раздражителем в пределах естественного радиационного фона. Считают, .что, часть наследственных изменений и мутаций у животных и растений связана с радиационным фоном [13].

В основе повреждающего действия ионизирующих излучений лежит комплекс взаимосвязанных процессов. Ионизация и возбуждение атомов и молекул дают начало образованию высокоактивных радикалов, вступаю-щих в последующем в реакции с различными биологическими структура-ми клеток. В повреждающем действии радиации важное значение имеют возможный разрыв связей в молекулах за счет непосредственного действия радиации, а также внутри- и межмолекулярной передачи энергии возбуж-дения. В последующем развитие лучевого поражения проявляется в нару-шении обмена веществ с изменением соответствующих функций.

Реакция человеческого организма на ионизирующее облучение зави-сит от дозы и времени облучения, размера поверхности тела, подвергшего-ся облучению, типа излучения и мощности дозы. Степень чувствительно-сти человеческих тканей к облучению различна. Чувствительность их в порядке уменьшения следующая: кроветворные органы, половые органы, ткань кожного покрова внутренних и наружных органов, ткань мозга и мышечная ткань, костные и хрящевые клетки, клетки нервной ткани. Чем моложе человек, тем выше его чувствительность к облучению. Человек в возрасте 30-50 лет наиболее устойчив к облучению.

Для категорий облучаемых лиц устанавливаются три класса норма-
тивов: '

основные пределы доз (ПД), приведенные в табл.1;

допустимые уровни монофакторного воздействия (для одного ра-дионуклида, пути поступления или одного вида внешнего облучения), яв-ляющиеся производными от основных пределов доз: пределы годового поступления (Я/77), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и другие;

контрольные уровни (дозы, уровни, активности, плотности потоков и др.). Их значения должны учитывать достигнутый уровень радиационной безопасности и обеспечивать условия, при которых радиационное воздей-ствие будет ниже допустимого [14].

Устанавливаются следующие категории облучаемых лиц:

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.