|
Излучения в производстве и защита от нихp align="left">Это дозиметрический, радиометрический, индивидуальный дозиметрический контроль и спектрометрические измерения.1. Дозиметрические приборы предназначены для измерения мощности дозы (уровня радиации), позволяют установить участки или зоны повышенного излучения (по сравнению с установленным порогом радиации). 2. Радиометрические приборы служат для определения радиоактивного загрязнения поверхности различных предметов, оборудования, транспортных средств, одежды, тары, продуктов, сырья, почвы и т.д. 3. Приборы индивидуального контроля позволяют измерить полученную человеком дозу в конкретной ситуации или за определенный период работы и времени. 4. Спектрометрические установки позволяют установить спектр содержания радионуклидов, изотопов на загрязненном объекте. В последнее время все приборы стали делить на профессиональные и бытовые. Измерение гамма-фона представляет непростую задачу, поскольку наиболее распространеннее типы приборов (СРП-2, СРП-68) вносят в измерения значительные погрешности за счет энергетической зависимости дозовой чувствительности (так называемый «ход жестокости»). Эта погрешность определяется энергетическим эквивалентом порога дискриминации импульсов и меняется от прибора к прибору. Приборы с газоразрядными счетчиками (типа ДРГ) не вносят значительных погрешностей, однако таких приборов в настоящее время выпускается мало. Термолюминесцентная дозиметрия (ТЛД) обладает высокой чувствительностью, приборы практически не имеют «хода жестокости». Пассивные накопители радона просты в конструкции и эксплуатации, применяются во многих странах, но пока отечественной промышленностью не выпускаются. К бытовым приборам относятся те, которые готовятся для населения. Правильная оценка радиоактивного загрязнения зависит от методики отбора и представительности проб, замера, оценки и обработки результатов измерений. В методике определения радиоактивности пищевых продуктов воды и окружающей среды условно можно выделить четыре основных момента: 1. Отбор и подготовка проб для измерений; 2. Подготовка приборов, прошедших метрологическую проверку, к проведению измерений; 3. Измерения фона и измерения радиоактивности у проб, других объектов и окружающей среды; 4. Обработка результатов и расчет радиоактивности (удельной массовой или объемной активности) проб и сопоставление их величин с предельно допустимой нормой. В каждом конкретном случае могут быть какие-то свои особенности, но существуют и общие закономерности, которые необходимо коротко изложить. 1. При отборе проб масса общей пробы должна быть не менее 0,5 - 1кг естественной влажности. Масса общей пробы для шерсти, пушного сырья, шкур, соков, сиропов, компотов - 100 - 200 г, для мясных, колбасных изделий и других - 200 - 300 г. Общая проба составляется из 8 - 10 точечных проб, которые отбираются через равные интервалы по схеме «сетки», «диагонали» с участка поля, бурта, насыпи, кучи, партии товара и т.д. С отобранной пробы, если это необходимо, удаляются загрязнения почвы путем тщательной промывки в дистиллированной воде. Кроме того, проводят очистку и измельчение массы пробы. Например, мясо и рыбу моют и удаляют чешую и внутренности, с колбасы - оболочку, с сыра - слой парафина. 2. Для измерения необходимо применять только те приборы, которые прошли метрологическую проверку. 3. Все работы по проведению замеров радиоактивности проб необходимо проводить в соответствии с паспортом и инструкцией данного типа приборов. Замеры радиации (фона) производят на расстоянии одного метра от пола (уровня земли). При возникновении аварий, связанных с радиационной опасностью разворачивают свою работу специальные подразделения и формирования ГО. Организация дозиметрического контроля. Дозиметрический контроль проводится под руководством начальников всех степеней и командиров формирований ГО. Дозиметрический контроль включает: * контроль облучения; * контроль радиоактивного загрязнения. Контроль облучения проводится с целью получения данных о поглощенных дозах радиации для первичной диагностики. Для измерения дозы облучения применяются дозиметры. Контроль облучения людей делится на две группы - групповой и индивидуальный. При групповом контроле один дозиметр выдается на группу людей (бригаду, звено и т.п.), или проводится расчетным методом с помощью формулы: (2) где:Д - поглощенная доза; Рср - средний уровень радиации (определяется при помощи прибора); Косл - коэффициент ослабления защитного сооружения. При индивидуальном контроле дозиметр выдается каждому работнику. Этот метод применяется для тех категорий, к которым нельзя применять групповой метод. Для учета поглощенных доз облучения ведутся следующие документы дозиметрического контроля: * сведения выдачи измерителей дозы и учета показателей; * журнал контроля облучения; * карточка учета доз облучения; * журнал отбора и сдачи проб (только в службах и штабах ГО); * донесение о трудоспособности и заражении людей, техники и другое. Контроль облучения нужен для того, чтобы поглощенные дозы радиации не превышали допустимых норм облучения. Допустимые дозы облучения: * в соответствии с нормами для населения поглощенная доза в нормальных условиях не должна превышать - 0,5 бэр за год (категория Б) * для персонала в нормальных условиях на 1год( категория А ) - 5 бэр; * для населения аварийное облучение на 1год - 10 бэр; * для персонала аварийное облучение на 1год - 25 бэр. В соответствии с Законом Украины "О защите человека от влияния ионизирующих излучений" №15/98-ВР предусмотрены следующие превышения допустимой дозы облучения: * для населения: 1мЗв/год (1000 мбэр/год - 0,1 бэр); * для персонала: не больше 20 мЗв/год (2000 мбэр/год - 2 бэр). Допускается до 5 бэр (50мЗв) при условии, что среднегодовая доза на протяжении пяти лет не больше 20 мЗв в год (2 бэр) в среднем. Структура дозы облучение поглощенной за год выглядит таким образом: * естественный фон - 200 мбэр; * медицинская рентгенодиагностика - 150 мбэр; * строительные материалы - 100 мбэр; * дополнительные источники облучения - 50 мбэр. Естественный радиационный фон обуславливается космическим излучением и естественными радиоактивными веществами. Интенсивность космического излучения зависит от высоты над уровнем моря и солнечной активности. Земными источниками излучений являются естественные радионуклиды, которые содержатся в веществах, используемых человеком в повседневной деятельности. Естественный радиационный фон для Украины составляет 0,01-0,03 мр/ч. На земном шаре есть местности, в которых поглощенные дозы значительно превышают допустимые: Индия, штат Карала есть местность где доза составляет 40,2 рад/год; Бразилия - 20 рад/год; США-26 рад/год; Франция-170 рад/год. Контроль радиоактивного загрязнения. Осуществляется с целью определения степени загрязнения радиоактивными веществами людей, животных, а также техники, одежды, средств индивидуальной защиты, продуктов, воды, фуража и других объектов. Степень радиоактивного загрязнения оценивается путем замеров мощности экспозиционной дозы излучения от этих объектов приборами (ДП-5, ИМД-21 и прочие) и сравнением их с нормативной. В мирное время пользуемся нормами, которые определены в "Основных санитарных правилах. ОСП-72/87" и НРБУ-97. Выводу из организма радиоактивных элементов способствует красный пигмент овощей и фруктов. Поэтому, если у вас в организме обнаружены радионуклиды, ежедневно употребляйте салаты из сырых овощей - моркови и свеклы красного цвета, капусты, сладкого перца, заправленные нерафинированным маслом или сметаной, а также фрукты и ягоды - красный виноград, изюм, курагу, черноплодную рябину, гранаты, яблоки. Что касается яблок, то содержащееся в них железо создает чистую кровь. Однако овощи и фрукты нужно подготовить для еды так, чтобы уменьшить в них содержание радионуклидов: в моркови нужно удалить сердцевину, обрезать концы и почистить, у свеклы обрезать снизу корешок, все волосяные отростки и верхушку, у капусты - снять три верхних слоя, вырезать кочерыжку. По рекомендации доктора Гейла, чеснок следует употреблять обязательно, как энергосорбент, впитывающий и выводящий радиоактивные элементы из организма. Н. Семенова рекомендует съедать зубчик чеснока без хлеба в течение двух-трех недель утром натощак за час до еды и вечером через два часа после еды. Хорошим радиопротектором является белая фасоль, содержащая около 12,5% железа, много микроэлементов и витаминов. Из нее можно готовить первые и вторые блюда, но вводить ее в питание надо постепенно из-за сильного метеоризма. Каши полезны лишь в том случае, если их тщательно жуют до разжижения слюной. То есть кашу нужно не есть, а как бы пить маленькими глотками. Очень полезна гречневая каша, не содержащая нитратов. Пшеничная каша необходима для улучшения зрения и укрепления нервной системы. Особенно нуждаются в ней жители тех зон, где в почве мало цинка. Полезны также соки с красильными пигментами - виноградный, томатный, гранатовый и др., а также красные вина - содержащие кроме красного пигмента, витамины В, С, Е. В профилактических целях их следует пить три раза в день по столовой ложке. Картофель перед готовкой необходимо очистить, срезав слой толщиной около 5мм, т.к. в нем могут быть радионуклиды. После очистки его нужно дважды бланшировать в кипятке и только после этого заправлять в супы. Варить или запекать в кожуре картофель нельзя. Особой осторожности требует сейчас молоко. Если нет гарантии, что оно чистое, не следует его пить. Лучше сделать из него творог. В этом случае количество радиоактивных элементов уменьшается в сотни раз, т. к. они собираются в сыворотке. Поэтому в сметане их немного, а в молоке значительно больше. В растопленном масле вредных элементов нет совсем. Если хлеб выпекается с использованием сыворотки, то радионуклиды собираются под корочкой, в тонком слое, который имеет вид «загрязненной» полоски толщиной 0,5см. Ее необходимо снимать перед едой. Да и вообще хлеба лучше есть поменьше. С осторожностью следует употреблять мясо, а лучше вообще ограничить его употребление. Наибольшее количество радионуклидов содержит говядина. Лучше в этом отношении свинина и птица. Не рекомендуется готовить котлеты из мясного фарша, т.к. в нем есть сукровица, и при жарке радионуклиды остаются в еде. Следует также исключить из рациона бульоны и холодец. Можно готовить отварное мясо, но первый отвар слить. Абсолютно чистым продуктом считается свиной жир. Он имеет биохимические способности не пропускать радионуклиды. Полезно и безопасно есть сало. Не следует, есть яйца, т.к. радиоактивный стронций со скорлупы переходит в белок. Лучше приготовить яичницу. Летом рекомендуется хлебный квас, содержащий все витамины группы В, тертая редька и хрен, которые можно есть через двенадцать часов после приготовления: если натерли хрен или редьку утром, то есть вечером. Полезно также употреблять аскорбиновую кислоту с глюкозой три раза в день и квадевит (по одной таблетке после завтрака и обеда). Следует предупредить «кофеманов» о том, что кофе задерживает радионуклиды в тканях организма. Лучше пить чайные бальзамы на основе общеукрепляющих и тонизирующих трав, но чай нужно пить только правильно заваренный и свежеприготовленный. С целью профилактики нужно ежедневно утром и вечером промывать полость рта и носа раствором морской соли (1ч.л. на стакан воды) или поваренной соли с добавлением двух капель йода. При этом вымываются из полости рта и носа радиоактивная пыль, болезнетворные вирусы и микробы. Особенно следует обратить внимание на рекомендуемую систему питания и ее режим в дни магнитных бурь, когда геомагнитное и гелеомагнитное поле накладывается на радиоактивное. 5. Зашита от электромагнитных полей (излучений) Различают электромагнитное поле естественного и антропогенного характера. Естественные источники ЭМП. На Земле люди постоянно подвергаются воздействию ЭМП Земли, солнца и других планет. Так, вокруг Земли, существует электромагнитное поле напряженность 130 Вт/п и оно во времени претерпевает изменений (годовые, суточные, грозовых разрядов, разных осадков, бурь). Магнитное поле Земли имеет напряженность 47.3 А/м на северном, 39.8 А/м - на южном полюсах, 19.9 А/м - на магнитном экваторе. И оно постоянно претерпевает цикличные изменения(80-годовые и 11-годовые циклы). ЭМП Солнца на Землю колеблются от 10 МГц до 10 ГГц (спектр излучения от инфракрасного, видимого, ультрафиолетового, рентгеновского и до j- излучения). В процессе жизнедеятельности человечества выработан защитный механизм от ЭМП естественного происхождения, однако негативные последствия их влияния проявляются в нервных и психологических расстройствах, заболеваниях сердечно-сосудистой системы и т.д. Антропогенные источники электромагнитных полей (ЭМП). Антропогенными источниками ЭМП являются: ЭМП естественного происхождения, линии электропередач (ЛЭП), открытые распределительные устройства, антенны теле и радиопередач, радиотехнические и электронные устройства, индукторы, конденсаторы технических устройств, генераторы связи высоких частот, электромагниты, трансформаторы и т.д. Спектр источников излучения электромагнитных полей очень высок - от 0.003 Гц до 300 ГГц (табл. 2.6.4.) Таблица 2. Спектр диапазонов электромагнитных излучений
Основные параметры электромагнитных полей (ЭМП). Для постоянного магнитного (магнитостатического) поля (ПМП) основной характеристикой является напряженность магнитного поля Н, измеряется в А/м. В постоянном электрическом (электростатическом) поле (ЭСП) основной характеристикой является его напряженность Е, измеряется В/м. (3) где: U - напряжение, В; l - расстояние, м. (4) где: I - сила тока, А; r - радиус окружности силовых линий, вокруг проводника по которому течет ток, м. При переменном электрическом поле возникает совокупность магнитного и электрического полей взаимно перпендикулярных по направлению и распространяющихся в пространстве в виде электромагнитных волн. Электромагнитное излучение характеризуется длиной волны, напряженностью магнитного (Н) и электрического (Е) полей (5) где: с1 - скорость распространения радиоволн, равная скорости распространения света: 300000 км/с = м/с; Т- период колебания, с; f - частота колебания, Гц. Область распространения ЭМП от источника условно разделяют на три зоны: ближнюю (зону индукции), промежуточную (зону интерференции), и дальнюю (волновую или зону излучения). Это пространство считается зоной облучения. Если рабочее место расположено в зоне индукции, работающий будет подвергаться воздействию периодически меняющихся электрического и магнитного полей, и их интенсивность будет определяться соответственно величинами Е и Н. В зоне индукции между Е и Н существует произвольное соотношение в зависимости от вида электромагнитного излучения (ЭМИ). Зона индукции (зона формирования) простирается на расстояние (6) Очевидно в ближайшей зоне (индукции) находятся рабочая зона установок с НЧ, СЧ, ВЧ и УВЧ. Поэтому в них контроль проводится по измерению параметров Е и Н. (в этой зоне и промежуточной зоне электромагнитная волна еще не сформирована). Зона излучения (волновая зона) простирается на расстояние R>л/(2П). В волновой зоне существует соотношение Е=377 Н. А в дальней зоне (излучения) находятся рабочие места с источниками электромагнитного излучения с длиной волны менее 1м СВЧ. В этой зоне электромагнитная волна уже сформировалась, поэтому ЭМИ оценивается не по величинам Е и Н, а по плотности потока энергии (ППЭ), который проходит в 1 с через 1 м2 поверхности перпендикулярной направлению распространения волн (Вт/ м2). Влияние электромагнитных полей радиочастот на организм человека. Степень влияния ЭМП на организм человека зависит от интенсивности поля, характера диапазона частот, продолжительности нахождения человека в опасной зоне облучения. Пренебрежительное отношение людей к опасности облучения обусловлено недооценкой или незнанием опасности облучения, отсутствием быстрого появления отрицательных последствий для организма и неспособностью органов чувств обнаруживать облучение. Длительное воздействие электромагнитных излучений низкой частоты вызывает функциональное нарушение центральной нервной системы, изменения в составе крови, сердечно- сосудистой системы (особенно при высокой напряженности ЭМИ). Высокочастотное излучение вызывает в организме изменение условно- рефлекторной деятельности (торможение условных и безусловных рефлексов), падение кровяного давления, снижение пульса. Постоянное воздействие облучения может привести к стойким функциональным изменениям в нервной и сердечно- сосудистой системах. При попадании человека в зону облучения, энергия магнитного поля частично поглощается его телом. Под действием высокочастотных полей в тканях возникают высокочастотные токи, сопровождающиеся тепловым эффектом. Электромагнитные поля при длительном воздействии могут вызывать повышенную утомляемость, раздражительность, головную боль, нарушение сна, понижение кровяного давления, изменение температуры тела и другие явления, связанные с расстройством центральной нервной и сердечно- сосудистой систем. Поля СВЧ, особенно сантиметрового и миллиметрового диапазонов, кроме того, вызывают изменения в крови, помутнение хрусталика (катаракта), ухудшение обоняния, а в отдельных случаях наблюдаются выпадение волос, ломкость ногтей и т.п. Функциональные сдвиги, вызванные воздействием электромагнитных полей после прекращения облучения обратимы. При этом следует учитывать, что обратимость функциональных сдвигов не беспредельна. Она определяется интенсивностью облучения, продолжительностью воздействия, а также индивидуальными особенностями организма. Поэтому профилактика профессиональных заболеваний должна включать, наряду с разработкой технических средств защиты, организационные мероприятия. Одной из основных проблем является защита работников на их рабочих местах. Гигиеническое нормирование электромагнитных излучений. Гигиеническим критерием безопасного пребывания человека в электромагнитном поле промышленной частоты(50 Гц) с напряжением 400 кВ и более принята напряженность электрического поля (Е). Нормируется, при этом, время пребывания человека в зависимости от напряженности электрического поля. В соответствии с ГОСТ 12.002-84 «Электрические поля промышленной частоты»: предельно допустимый уровень (ПДУ) напряженности Е устанавливается равным 25 кВ/м; пребывание в зоне с напряженностью более 25 кВ/м без средств защиты запрещено. В таблице 2.6.5. приведено время безопасного пребывания людей в электрическом поле. Таблица. 3. Время безопасного пребывания людей в зоне электромагнитных полей
Допустимое время пребывания в ЭП может быть реализовано единовременно и по частям в течении рабочего дня. В остальное время Е не должно превышать 5 кВ/м. Напряженность постоянных магнитных полей на рабочем месте не должна превышать 8 кА/м. А ПДУ напряженности электростатических полей составляет 60 кВ/м в течении одного часа. При напряженности менее 20 кВ/м время пребывания в электростатических полях не регламентируется. В диапазоне частот 60 кГц … 300 МГц нормируются напряженности электрической и магнитной составляющих, электромагнитных излучений. Согласно ГОСТ 12.1.006-84 «ССБТ электромагнитного поля радиочастот. Общие требования безопасности» напряженность ЭМП на рабочих местах и в местах возможного нахождения персонала не должна превышать значений приведенных в табл. 2.6.6 Таблица 4. Предельно-допустимые уровни напряженности электромагнитного поля (радиочастотный диапазон) при продолжительности воздействия 8 ч.
В диапазоне частот 300МГц - 300 ГГц нормируется плотность потока энергии (ППЭ) электрического поля. Предельную плотность потока энергии ЭМП радиочастот 300МГц-300ГГц на рабочих местах и в местах возможного нахождения персонала, связанного с воздействием ЭМП, устанавливают исходя из допустимого значения энергетической нагрузки на организм и времени пребывания в зоне облучения. Во всех случаях она не должна превышать 10 Вт/м. кв., а при наличии рентгеновского излучения или высокой температуры воздуха в рабочих помещениях (выше 28 С) - 1 Вт/м. кв. (Гост 12.1.006 - 84). Приведенные значения ПДУ напряженности электрического поля в табл. 2.6.6. не распространяются на радио - и теле излучения (нормируются отдельно). Защита от воздействия ЭМП - радиочастот. Основными способами защиты от воздействия ЭМП - радиочастот являются: уменьшение интенсивности облучения, экранирование рабочего места или удаление его от источника облучения, применение средств индивидуальной защиты. На практике может применяться один или одновременно несколько методов защиты. Источники излучения или рабочие места экранируют металлическими камерами или щитами, покрытыми поглощающими материалами или сделанными из ферритового поглощающего материала, а также мягкими экранами из специальных тканей, обладающих экранирующими свойствами. Применение различных экранирующих устройств является надежной защитой от электромагнитного излучения. Действие всех применяемых в настоящее время защитных материалов основано на их способности отражения или поглощения излучения. К отражающим материалам относятся любые обладающие высокой токопроводимостью материалы, например металлы. Однако, эти материалы обладают и отрицательным свойством: в некоторых случаях возможно образование отраженных электромагнитных полей, которые могут усилить облучение. Степень ослабления напряженности электромагнитного поля за счет экранирования выражается величиной эффективности экранирования, она показывает, во сколько раз уменьшается напряженность поля на данном участке при экранировании его источника: (7) где Э - эффективность экранирования; Ео - напряженность поля до экранирования; Еэ - напряженность поля после экранирования. Сплошные металлические экраны обеспечивают в СВЧ - диапазоне надежное экранирование при любых практически встречающихся интенсивностях. Сетчатые экраны обладают худшими экранирующими свойствами, но широко используются, когда достаточно ослабления мощности до 1000 раз. Удаление рабочего места от источника облучения - одно из средств снижения интенсивности облучения людей на предприятии. Оно реализуется благодаря дистанционному управлению и автоматизированному контролю, определению границы опасной зоны, где прогноз потока мощности (ППМ) может превышать предельно допустимые значения, определяются при работе аппаратуры в режиме максимальной мощности излучения. По границам зон с ППМ, превышающей ПДУ, следует установить предупредительные знаки: «Не входить! Опасно!». Ориентировочное расстояние от источника излучения, на котором ППМ не превышает ПДУ, можно определить по формуле: (8) где Rн - искомое расстояние, м; R - расстояние, на котором производились измерения, м; Р - измеренная ППМ, мкВт/см2; Рдоп - допустимая ППМ, мкВт/см2. Снижение интенсивности электромагнитных полей в рабочей зоне может быть достигнуто экранированием источников облучения сплошными металлическими и сетчатыми экранами. Интенсивность облучения возможно снизить также с помощью поглощающих покрытий, часто в качестве материала экрана применяют фольгу. В качестве защитных покрытий применяют резиновые коврики с коническими шипами, магнитоэлектрические пластины с покрытием на основе поролона ВРМП, поглощающие электромагнитную энергию соответственно в диапазоне 0,8 - 10,6 см, и т.п. Для снижения вредного влияния ЭМП на работающих важное место занимает установление рационального режима труда и отдыха и применение средств индивидуальной защиты (СИЗ). В качестве СИЗ применяется спецодежда, которая изготовлена из металлической ткани (комбинезоны, халаты, передники, куртки с капюшонами с вмонтированными в них защитными очками). При интенсивном излучении более 10 Вт/см2 применение защитных очков обязательно, даже, при кратковременных работах. Применяются специальные очки: типа ОРЗ-5 (стекла которых покрыты слоем полупроводника из оксида олова - ослабление мощности в диапазоне волн 0,8 …..150см более чем в 1000 раз), сетчатые очки в виде полумаски с числом ячеек 186-560 на см 2 при диаметре проволоки 0,07- 0,14 мм. Следует учесть, что применение СИЗ (металлизированная среда) повышает электроопасность. 6. Обеспечение безопасности при работе и эксплуатации лазеров Оптические квантовые генераторы (ОКГ), или лазеры, находят широкое применение в различных сферах жизнедеятельности Украины: обработка материалов (резка, пайка, точечная сварка, сверление отверстий в металлах, сверхтвердых материалах и кристаллах), строительство, радиоэлектроника, медицина, космос и т.д. Принцип действия лазера основан на свойстве атома (сложной квантовой системы) излучать фотоны при переходе из возбужденного состояния. Возбуждение атомов достигается с помощью различных приемов подачи на рабочее тело (кристалл, газ, жидкость) энергии накачки (свет, ВЧ - электромагнитное поле и т.д.). При этом число атомов, находящихся в возбужденном состоянии, возникает больше числа атомов, находящихся на основном уровне энергии. Лавинообразный переход атомов за короткий промежуток времени из возбужденного состояния в основное приводит к возникновению лазерного излучения. Излучение существующих лазеров охватывает практически весь оптический диапазон - от ультрафиолетовой до инфракрасной области спектра электромагнитных волн. Электромагнитная энергия образуется в результате возбуждения атомов так называемых рабочих веществ, создающих лазерный эффект. У большинства современных лазеров плотность потока мощности достигает 1011 - 1014 Вт/см2. Лазеры позволяют концентрировать энергию на сравнительно малой площади. ОКГ в зависимости от характера генерации лазера подразделяются на импульсные (длительность излучения 0,25 с.) и лазеры непрерывного действия (длительность излучения 0,25 с. и более). Лазерное излучение является электромагнитным излучением, генерируемым в диапазоне длин волн 0,2 - 1000 мкм, который может быть разбит в соответствии с биологическим действием на ряд спектров: * от 0,2 до 0,4 мкм - ультрафиолетовая область; * свыше 0,4 до 0,75 мкм - видимая область; * свыше 0,75 до 1,4 мкм - ближняя инфракрасная область; * свыше 1,4 мкм - дальняя инфракрасная область. Основной энергетической характеристикой лазера при импульсном режиме генерации является энергия лазерного импульса, его длительность. Импульсные генераторы характеризуются энергией выхода (Дж), нормируемым параметром является плотность энергии на единицу поверхности (Дж/см2). Генератор непрерывного излучения характеризуется выходной мощностью (Вт) - нормирование проводится по отношению мощности к площади поверхности (Вт/см2). Лазерное излучение разделяется на: * прямое (ограниченное телесным углом); * рассеянное (за счет прохождения луча через вещество среды); * зеркальное и диффузное отражения. Лазер является источником нескольких видов опасности, главным из которых является его излучение. Согласно ГОСТ 12.1.040-83 “Лазерная безопасность. Общие положения” по степени опасности генерирующего ими излучения лазеры подразделяются на четыре класса: I-й класс - лазеры, выходное излучение которых не представляет опасности для глаз и кожи; II-й класс - лазеры, выходное излучение которых представляет опасность при облучении глаз прямым или зеркально отраженным излучением; III-й класс - лазеры, выходное излучение которых представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности; IV-й класс - лазеры, выходное излучение которых представляет опасность при облучении кожи отраженным излучением на расстоянии 10 см от отражающей поверхности. Класс лазера устанавливается предприятием-изготовителем. Биологическое воздействие лазерного излучения на организм делится на две группы: * первичные эффекты или органические изменения, возникающие непосредственно в облучаемых тканях персонала; * вторичные эффекты - различные неспецифические изменения, возникающие в тканях в ответ на облучение. Основные негативные проявления на организм человека: тепловые, фотоэлектрические, люминесцентные, фотохимические. При попадании лазерного излучения на поверхность металла, стекла и др. происходит отражение и рассеивание лучей. Опасные и вредные факторы работы ОКГ: * лазерное облучение (прямое, рассеянное, отраженное); * световое излучение от импульсных ламп; * ультрафиолетовое излучение от кварцевых газоразрядных трубок; * шумовые эффекты; * ионизирующее излучение; * электромагнитные поля ВЧ и СВЧ от генераторов накачки; * инфракрасное излучение и тепловыделение от оборудования и нагретых поверхностей; * агрессивные и токсические вещества, используемые в конструкции лазера. Степень воздействия лазерного излучения на организм человека зависит от длины волны, интенсивности (мощности и плотности) излучения, длительности импульса, частоты импульсов, времени воздействия, биологических особенностей тканей и органов. Наиболее биологически активно ультрафиолетовое излучение, вызывающее фотохимические реакции. За счет термического действия лазерного излучения на коже возникают ожоги, а при энергии более 100 Дж происходит разрушение и сгорание биоткани. При длительном воздействии импульсного излучения в облученных тканях энергия излучения быстро преобразуется в теплоту, что ведет к мгновенному разрушению тканей. Нетермическое действие лазерного излучения связано с электрическими и фотоэлектрическими эффектами. Поток энергии, попадая на биологические ткани, вызывает в них изменения, наносящие вред здоровью человека. Опасно это излучение и для органов зрения. Особенно опасно, если лазерный луч пройдет вдоль зрительной оси глаза. Если луч лазера фиксируется на сетчатке глаза, то может произойти коагуляция сетчатки, в результате чего возникнет слепота в пораженной области сетчатки. При этом необходимо помнить, что опасность для органов зрения представляет не только прямой, но и отраженный лазерный луч, даже если отражающая его поверхность незеркальная. В качестве основного критерия при нормировании лазерного излучения принята степень изменений, которые происходят под его воздействием в органах зрения и коже. Согласно СанНиП 5804-91 “Санитарные нормы и правила устройства и эксплуатации лазеров” и ГОСТ 12.1.040-83 “ССБТ. Лазерная безопасность. Общие требования” установлены предельно допустимый уровень (ПДУ) лазерного излучения в зависимости от длины волны (табл. 2.6.7.). За ПДУ лазерного излучения принимается энергетическая экспозиция облучаемых тканей. Энергетической экспозицией называется отношение падающей энергии к площади этого участка. Единицей измерения является Дж/см2. Суммирующий биологический эффект лазерного излучения оценивается с учетом одновременного воздействия различных параметров излучений и времени воздействия. Например, энергетическая экспозиция на роговице глаза и коже за общее время облучения в течение рабочей смены в диапазоне длин волн 0,2…0,4 мкм составляет 10-8-10-3 Дж/см2. Методы защиты от лазерного излучения подразделяются на: инженерно-технические, организационные, санитарно-гигиенические, планировочные, а также включают использование средств индивидуальной защиты. Цель организационных методов защиты - исключить попадание людей в опасные зоны при работе на лазерных установках. Этого можно достичь, проводя соответствующее обучение операторов безопасным приемам труда и проверку знаний инструкций по проведению работ. При этом необходимо помнить, что доступ в помещение лазерных установок разрешается только лицам, непосредственно на них работающим; опасная зона должна быть четко обозначена и ограждена стойкими непрозрачными экранами. Таблица 5. ПДУ лазерного излучения в зависимости от длины волны
Принятие мер лазерной безопасности зависит от класса лазера. Все лазеры должны быть промаркированы знаком лазерной опасности с надписью “Осторожно! Лазерное излучение!”. Лазеры должны размещаться в специально оборудованных помещениях, а на дверях помещений лазеров II, III и IV классов должны быть установлены знаки лазерной опасности. Лазер IV класса опасности должны располагаться в отдельных помещениях, стены и потолки должны быть отделаны покрытиями с матовой поверхностью (с высоким коэффициентом поглощения), в помещении не должно быть зеркальных поверхностей. При размещении лазеров II, III, IV классов с лицевой стороны пультов и панелей управления должно быть свободное пространство шириной не менее 1,5м при однорядном расположении лазеров и шириной не менее 2,0 м при двухрядном. С боковых и задних стенок лазеров при наличии открывающихся дверей, съемных панелей должно быть свободное расстояние не менее 1 м. Инженерно-технические и планировочные методы защиты предусматривают уменьшение мощности применяемого лазера и надежную экранировку, правильную установку оборудования (луч лазера должен быть направлен на капитальную не отражающую огнестойкую стену), исключение блеска отражающих поверхностей и предметов, создание обильного освещения, чтобы зрачок глаза всегда имел минимальные размеры. Лазеры IV класса обязательно должны иметь дистанционное управление, а дверь в помещение должна иметь защитную блокировку со звуковой и световой сигнализацией. Излучение лазеров II, III, IV классов не должно попадать на рабочие места. Материалы для экранов и ограждений должны быть не горючими с минимальными коэффициентами отражения по длине волны генерирующего лазера. Под воздействием лазера материалы не должны выделять токсических веществ. Периодический дозиметрический контроль лазерного излучения заключается в измерении параметров излучения в заданной точке пространства и сравнении полученных значений плотностей мощности непрерывного излучения, энергии импульсного или импульсно-модулированного излучения, энергетической плотности рассеянного излучения со значениями соответствующих ПДУ (проводится не реже 1 раза в год при эксплуатации лазеров II, III и IV классов). Контроль проводится обязательно при введении в эксплуатацию лазеров II, III и IV классов, а также при внесении изменений в конструкцию лазеров, при изменении конструкции средств защиты, при организации новых рабочих мест. Порядок проведения дозиметрического контроля и требования к измерительной аппаратуре должны соответствовать ГОСТ 12.1.031-81 “ССБТ. Лазеры. Методы дозиметрического контроля лазерного излучения”. Измерение энергетических характеристик лазерного излучения проводится приборами типа ИЛД-2. К обслуживанию лазеров допускаются лица не моложе 18 лет, не имеющие противопоказаний (приказ № 700 от 19.06.84 г. Минздрава СССР). Персонал проходит инструктаж и обучение методам безопасной работы и подвергается при принятии на работу и периодическим (1 раз в год) медицинским осмотрам с участием терапевта, невропатолога и окулиста. Оптические квантовые генераторы должны соответствовать эксплуатационной документации. В паспорте должны быть указаны: длина волны (мкм); мощность энергии (Вт, Дж); длительность импульса (с); частота импульса (Гц); начальный диаметр (см); расходимость пучка (ряд); класс лазера (I - IV). Кроме паспорта на лазер должны быть инструкции по эксплуатации, технике безопасности, производственной санитарии для лазеров II - IV классов; протокол наладки лазера, проверки изоляции и заземления, протокол измерения уровней лазерного излучения, протокол измерения интенсивности электромагнитного и ионизирующего излучения на рабочих местах, протокол анализов воздушной среды рабочей зоны на содержание токсических и агрессивных химических веществ для лазеров, журнал оперативной записи по ремонту и эксплуатации установки для лазеров II - IV классов, приказ о назначении ответственного лица, обеспечивающего исправное состояние и безопасную эксплуатацию лазеров. Работа с лазерными установками должна проводиться с ярким общим освещением. ЗАПРЕЩАЕТСЯ в момент работы лазерной установки: * осуществлять визуальный контроль степени излучения, генерацией; * направлять излучение лазера на человека; * персоналу носить блестящие предметы (серьги, украшения); * обслуживать лазерную технику одним человеком; * находиться посторонним лицам в зоне излучения; * размещать в зоне луча предметы, вызывающие зеркальное отражение. Рабочие места должны быть оборудованы вытяжной вентиляцией. При недостаточном обеспечении безопасности коллективными средствами защиты применяются индивидуальные СИЗ. К средствам индивидуальной защиты относятся специальные противолазерные очки (светофильтры), щитки, маски, технологические халаты и перчатки (черного цвета из обычных хлопчатобумажных тканей). Ношение защитных очков со светофильтрами (табл. 2.6.8) обеспечивает интенсивное снижение облучения глаз лазерным облучением. Светофильтры должны соответствовать специальной оптической плотности, спектральной характеристике и максимально допустимому уровню излучения. Таблица 6. Марки стекол, рекомендуемые для использования в противолазерных очках
* оранжевое стекло ** сине-зеленое стекло *** бесцветное стекло Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |