1.1 Класифікація та характеристика основних видів техногенного випромінювання
1.2 Джерела штучних іонізуючих випромінювань
1.3 Одиниці вимірювання радіоактивних випромінювань
РОЗДІЛ 2. ДІЯ ТЕХНОГЕННОГО ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ НА ОРГАНІЗМ ЛЮДИНИ
2.1 Біологічна дія іонізуючого випромінювання
2.2 Гостра і хронічна променева хвороба
2.3 Опромінення і репродуктивна функція людини
2.4 Онкогенні наслідки опромінення людини
2.5 Опромінення і тривалість життя людини
РОЗДІЛ 3. ДОЗИМЕТРИЧНИЙ КОНТРОЛЬ ТА ЗАХИСТ ДОВКІЛЛЯ ВІД ІОНІЗУЮЧИХ ВИПРОМІНЮВАНЬ
3.1 Методи визначення іонізуючих випромінювань
3.2 Класифікація дозиметричних приладів
3.3 Прилади для радіаційної розвідки і контролю радіоактивного забруднення
3.4 Захист від іонізуючих випромінювань
ВИСНОВКИ
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
ВСТУПІонізуючі випромінювання існували на Землі ще задовго до появи на ній людини. Проте вплив іонізуючих випромінювань на організм людини був виявлений лише наприкінці XIX ст. з відкриттям французького вченого А.Беккереля, а потім дослідженнями П'єраі Марії Кюрі явища радіоактивності.Термін "іонізуюче випромінювання"характеризує будь-яке випромінювання, яке прямо або посередньо викликає іонізацію оточуючого середовища (утворення позитивно та негативно заряджених іонів).Особливістю іонізуючих випромінювань є те, що всі вони відзначаються високою енергією і викликають зміни в біологічній структурі клітин, які можуть призвести до їх загибелі. На іонізуючі випромінювання не реагують органи чуття людини, що робить їх особливо небезпечними.Іонізуюче випромінювання існує протягом всього періоду існування Землі, воно розповсюджується в космічному просторі. Вплив іонізуючого випромінювання на організм людини почав досліджуватися після відкриття явища радіоактивності у 1896 р. французьким вченим Анрі Беккерелем, а потім досліджений Марією та П'єром Кюрі, які в 1898 році прийшли до висновку, що випромінювання радію є результатом його перетворення в інші елементи. Характерним прикладом такого перетворення є ланцюгова реакція перетворення урану-238 у стабільний нуклід свинцю-206.На кожному етапі такого перетворення вивільняється енергія, яка далі передається у вигляді випромінювань. Відкриттю Беккереля та дослідженню Кюрі передувало відкриття невідомих променів, які у 1895 році німецький фізик Вільгельм Рентген назвав Х-про-менями, а в подальшому, в його честь, названо рентгенівськими.Перші ж дослідження радіоактивних випромінювань дали змогу встановити їх небезпечні властивості. Про це свідчить те, що понад 300 дослідників, які проводили експерименти з цими матеріалами, померли внаслідок опромінення.Мета роботи полягає в тому, щоб проаналізувати особливості впливу техногенно-іонізуючих випромінювань та захист від них.Завдання роботи:1) дати характеристику іонізуючих випромінювань;2) проаналізувати дію техногенного іонізуючого випромінювання на організм людини;3) проаналізувати проведення дозиметричного контролю та захисту довкілля від іонізуючих випромінювань.РОЗДІЛ 1. ХАРАКТЕРИСТИКА ІОНІЗУЮЧИХ ВИПРОМІНЮВАНЬ1.1 Класифікація та характеристика основних видів техногенного випромінюванняПоняття "іонізуюче випромінювання" об'єднує різноманітні види, різні за своєю природою, випромінювання. Подібність їх полягає в тому, що усі вони відрізняються високою енергією, мають властивість іонізувати і руйнувати біологічні об'єкти.Іонізуюче випромінювання -- це будь-яке випромінювання, взаємодія якого із середовищем призводить до утворення електричних зарядів різних знаків.Штучними джерелами іонізуючих випромінювань є ядерні реактори, прискорювачі заряджених частинок, рентгенівські установки, штучні радіоактивні ізотопи, прилади засобів зв'язку високої напруги тощо. Як природні, так і штучні іонізуючі випромінювання можуть бути електромагнітними (фотонними або квантовими) і корпускулярними. Корпускулярне -- потік елементарних частинок .із масою спокою, відмінною від нуля, що утворюються при радіоактивному розпаді, ядерних перетвореннях, або генеруються на прискорювачах. Це а і b частки, нейтрони, протони та ін.Фотонне -- потік електромагнітних коливань, що поширюється у вакуумі з постійною швидкістю 300 000 км/с. Це у -випромінювання і рентгенівське випромінювання.Вони різняться умовами утворення і властивостями: довжиною хвилі й енергією. До фотонного випромінювання належить й ультрафіолетове випромінювання -- найбільш короткохвильова частина спектра сонячного світла (довжина хвилі 400*10-9м).Випромінювання характеризуються за своєю іонізуючою і проникаючою спроможностями. Іонізуюча спроможність випромінювання визначається питомою іонізацією, тобто числом пар іонів, що утворюються частинкою в одиниці об'єму, маси середовища або на одиниці довжини шляху. Різноманітні види випромінювань мають різноманітну іонізуючу спроможність. Проникаюча спроможність випромі-^ нювань визначається розміром пробігу, тобто шляхом, пройденим часткою в речовині до її повного зникнення.Класифікація іонізуючих випромінювань, яка враховує їх природу, наведена на рис. 1.1.Рис. 1.1. Класифікація іонізуючих випромінюваньРентгенівське випромінювання виникає в результаті зміни стану енергії електронів, що знаходяться на внутрішніх оболонках атомів, і має довжину хвилі (1000 - 1)10-12 м. Це випромінювання є сукупністю гальмівного та характеристичного випромінювання, енергія фотонів котрих не перевищує 1 МеВ.Характеристичним називають фотонне випромінювання з дискретним спектром, що виникає при зміні енергетичного стану атома.Гальмівне випромінювання - це фотонне випромінювання з неперервним спектром, котре виникає при зміні кінетичної енергії заряджених частинок.Рентгенівські промені проходять тканини людини наскрізь.Гамма (?)-випромінювання виникають при збудженні ядер атомів або елементарних частинок. Довжина хвилі (1000 - 1)10-15м.Джерелом g-випромінювання є ядерні вибухи, розпад ядер радіоактивних речовин, вони утворюються також при проходженні швидких заряджених частинок крізь речовину. Завдяки значній енергії, що знаходиться в межах від 0,001 до 5 МеВ у природних радіоактивних речовин та до 70 МеВ при штучних ядерних реакціях, це випромінювання може іонізувати різні речовини, а також характеризується великою проникаючою здатністю, ?-випромінювання проникає крізь великі товщі речовини. Поширюється воно зі швидкістю світла і використовується в медицині для стерилізації приміщень, апаратури, продуктів харчування.Альфа (а)-випромінювання - іонізуюче випромінювання, що складається з ос-частинок (ядер гелію), які утворюються при ядерних перетвореннях і рухаються зі швидкістю близько до 20000 км/с. Енергія ос-частинок - 2-8 МеВ. Вони затримуються аркушем паперу, практично не здатні проникати через шкіряний покрив. Тому а-частинки не несуть серйозної небезпеки доти, доки вони не потраплять всередину організму через відкриту рану або через кишково-шлунковий тракт разом із їжею, а-частинки проникають в повітря на 10-11 см від джерела, а в біологічних тканинах на 30-40 мкм.Бета (?) -випромінювання - це електронне та позитронне іонізуюче випромінювання з безперервним енергетичним спектром, що виникає при ядерних перетвореннях. Швидкість ?-частинок близька до швидкості світла. Вони мають меншу іонізуючу і більшу проникаючу здатність у порівнянні з ?-частинками. ?-частинки проникають в тканини організму на глибину до 1-2 см, а в повітрі - на декілька метрів. Вони повністю затримуються шаром ґрунту товщиною 3 см.Потоки нейтронів та протонів виникають при ядерних реакціях, їх дія залежить від енергії цих частинок.Контакт з іонізуючим випромінюванням являє собою серйозну небезпеку для життя та здоров'я людини.Однак при виконанні певних технічних та організаційних заходів цей вплив можна звести до безпечного.Енергію частинок іонізуючого випромінювання вимірюють у позасистемних одиницях електрон-вольтах, еВ. 1 еВ = 1,6-10*1 джоуля (Дж).1.2 Джерела штучних іонізуючих випромінюваньДо техногенних джерел іонізуючих випромінювань відносяться:- іспиту ядерної зброї;- підприємства по видобутку, переробці й одержанню матеріалів, що розщеплюються, і штучних радіоактивних ізотопів;- установи, підприємства і лабораторії, що використовують радіоактивні речовини в технології виробничих процесів.1. Випродування ядерної зброї. Прямим наслідком дії Договору про припинення випробування ядерної зброї в трьох середовищах з'явилося зниження кількості радіоактивних опадів, що випадають повсюдно на нашій планеті. Зменшилося і радіоактивне забруднення рослинності, включаючи сільськогосподарські культури. Однак радіоізотопи з тривалим періодом напіврозпаду продовжують накопичуватися в ґрунті і надходити в рослинний світ.При атомних вибухах утворюються продукти розподілу ядерного палива, що часто називають частинками розподілу, і наведена активність; у навколишнє середовище надходить і деяку кількість самих матеріалів, що розщеплюються.При вибуху термоядерних пристроїв додатково виникає радіоактивний 14С.Частинки розподілу - складна суміш радіоактивних речовин, що утворяться при розподілі атомних ядер. Ядра атомів 235U або 238Рu розщеплюються з утворенням 80 різних частинок. Останні починають негайно розпадатися. У результаті виникає складна суміш продуктів розподілу з 200 різних ізотопів 36 хімічних елементів, періоди напіврозпаду яких знаходяться в межах від 1 з до 1,57-107 років. По характері випромінювання майже всі радіоактивні ізотопні розподіли відносяться до ? або ? і ?-випромінювачам.Найбільше потенційно небезпечними осколками через їхнє активне включення в біологічний цикл і великий період напіврозпаду вважають Sr і Cs.З численної групи радіоактивних ізотопів, що утворяться при ядерних вибухах, що веде місце в додатковому до природного радіаційного тла опромінення людини займають такі радіонукліди, як 3Н, 14С, 89Sr, 90Sr, 95Zr, 95Nb, 106Ru, 131І, 137Cr, 140Ba, 144Ba, 239Pu.2. Підприємства по видобутку, переробці й одержанню матеріалів, що розщеплюються, і штучних радіоактивних речовин - потенційні джерела забруднення навколишнього середовища. Це підприємства атомної промисловості: уранові рудники і гідрометалургійні заводи по одержанню збагаченого урану (уранового концентрату), заводи по очищенню уранових концентратів, експериментальні й енергетичні реактори, заводи з виробництва ядерного пального.До відходів, що виникають при видобутку уранової руди, відносяться шахтні води, рудні відвали і рудничне повітря. Вміст урану в шахтних водах досягає 0,3-10 мг/л, радію - 0,2-3,7 Бк/л. У рудних відвалах утримуються соті частки відсотка урану, радію - від 5х10-10 г/г. Унаслідок вимивання і вітрової ерозії відвали можуть ставати джерелами забруднення навколишньої території. Рудничне повітря, що надходить в атмосферу при вентилюванні шахт, може містити підвищена кількість радону і його продуктів.Основними відходами гідрометалургійних заводів є рудні пульпи, що складаються з песковой шламової фракції. У пісках, що скидаються, і шламах вміст урану складає 0,02-0,028%, радію - (2-3)х10-10 г/г.З газовими викидами гідрометалургійних підприємств в атмосферне повітря можуть надходити радон, аэрозоли урану, радію (при видаленні вентиляційного повітря з ділянок здрібнювання руди, сушіння, прокалки і фасовки уранового концентрату) і т.д.На заводах по очищенню уранових концентратів (або збагачення урану) у процесі виробництва утвориться до 5,7 м3 рідких відходів на 1 т збагаченого урану. Газоподібні викиди цих заводів можуть містити гексафторид урану й урановмісні пил і дим від хімічних процесів і механічної обробки металевого урану.При експлуатації атомних електростанцій і експериментальних реакторів утворяться газоподібні, рідкі і тверді радіоактивні відходи. Радіоактивні гази й аэрозоли виникають у результаті опромінення газів і аэрозолей повітря нейтронами в зоні реактора.Процеси одержання ядерного пального супроводжуються утворенням газоподібних відходів, основна активність яких обумовлена присутністю в них радіойоду.Джерелами рідких радіоактивних відходів реакторів можуть служити вода або будь-які розчини, застосовувані як теплоносії. У цьому випадку наведена активність, що виникає в теплоносії першого контуру, буває обумовлена захопленням нейтронів атомами елементів, що надходять у теплоносія в результаті процесу корозії елементів конструкцій. Іншим джерелом рідких відходів є басейни витримки тепловиділяючих елементів (ТВЕЛ), використовувані для підвідного збереження що відробили ТВЭЛ. Вода басейнів може забруднюватися продуктами розподілу при порушенні цілості оболонок ТВЕЛІВ, домішками, що потрапили на оболонки, і іншими матеріалами, що попадають у воду басейну при розвантаженні реактора. До рідких відходів відносяться також стічні води санітарних пропускників і спецпрачечных, а також води після дезактивації устаткування і приміщень.На заводах з виробництва ядерного пального насамперед видаляють оболонки ТВЕЛ, а потім паливо розчиняють і роблять екстракцію урану і плутонію. При здійсненні зазначених операцій виникають рідкі радіоактивні відходи в значних обсягах з питомою активністю до 1 Ки/л і більш.3. Установи, підприємства і лабораторії, що використовують радіоактивні речовини в технології виробничого процесу. До цієї групи потенційних джерел радіоактивного забруднення навколишнього середовища відносяться: "гарячі" лабораторії, радіоізотопні лабораторії і радіологічні відділення медичних установ, лабораторії науково-дослідних інститутів, де проводяться роботи в області біології і сільського господарства з використанням відкритих радіоактивних речовин, радіоізотопні лабораторії в промисловості і т.д..У залежності від характеру технологічного процесу, здійснюваного в "гарячих" лабораторіях (фасовка радіоактивних речовин, виконання експериментів з опроміненими на реакторах матеріалами, виготовленням радіоактивних препаратів і т.д. ), вони можуть бути джерелами газоподібних, рідких і твердих радіоактивних відходів з високим змістом у них різноманітних радіоактивних ізотопів.При застосуванні відкритих радіоактивних речовин у медичній практиці можливе утворення газоподібних, рідких і твердих радіоактивних відходів (повітря, вилучений з боксів і витяжних шаф; виділення хворих; респіратори однократного використання, фільтрувальна папера й ін.).У лабораторіях сільськогосподарського профілю утворяться відходи у формі стебел, листя, плодів і інших супутніх матеріалів.Слід зазначити, що обсяг і питома активність відходів зазначеної групи об'єктів (за винятком "гарячих" лабораторій) порівняно невеликі в порівнянні з відходами підприємств, що відносяться до другої групи потенційних джерел забруднень навколишнього середовища.Наявність природних і техногенних джерел іонізуючих випромінювань визначає можливість реального опромінення людей.Для попередження несприятливої дії іонізуючих випромінювань на організм здійснюється гігієнічне регламентування опромінення людини, що є найважливішим заходом у системі забезпечення радіаційної безпеки працюючих і населення.1.3 Одиниці вимірювання радіоактивних випромінюваньСеред різноманітних видів іонізуючих випромінювань, як уже зазначалося вище, надзвичайно важливими при вивченні питання небезпеки для здоров'я і життя людини є випромінювання, що виникають в результаті розпаду ядер радіоактивних елементів, тобто радіоактивне випромінювання.Щоб уникнути плутанини в термінах, варто пам'ятати; що радіоактивні випромінювання, незважаючи на їхнє величезне значення, є одним з видів іонізуючих випромінювань. Радіонукліди утворюють випромінювання в момент перетворення одних атомних ядер в інші. Вони характеризуються періодом напіврозпаду (від секунд до млн років), активністю (числом радіоактивних перетворень за одиницю часу), що характеризує їх іонізуючу спроможність. Активність у міжнародній системі (СВ) вимірюється в беккерелях (Бк), а позасистемною одиницею є кюрі (Кі). Один Кі = 37 х 109 Бк. Міра дії іонізуючого випромінювання в будь-якому середовищі залежить від енергії випромінювання й оцінюється дозою іонізуючого випромінювання. Останнє визначається для повітря, речовини і біологічної тканини. Відповідно розрізняють * експозиційну, * поглинену та * еквівалентну дози іонізуючого випромінювання.Експозиційна доза характеризує іонізуючу спроможність випромінювання в повітрі, вимірюється в кулонах на 1 кг (Кл/кг); позасистемна одиниця -- рентген (Р); 1 Кл/кг -- 3,88 х 103Р. За експозиційною дозою можна визначити потенційні можливості іонізуючого випромінювання.Поглинута доза характеризує енергію іонізуючого випромінювання, що поглинається одиницею маси опроміненої речовини. Вона вимірюється в. греях Гр (1 Гр-1 Дж/кг). Застосовується і позасистемна одиниця рад (1 рад -- 0,01Гр= 0,01 Дж/кг).Доза, яку одержує людина, залежить від виду випромінювання, енергії, щільності потоку і тривалості впливу. Проте поглинута доза іонізуючого випромінювання не враховує того, що вплив на біологічний об'єкт однієї і тієї ж дози різних видів випромінювань неоднаковий. Щоб врахувати цей ефекту введено поняття еквівалентної дози.Еквівалентна доза є мірою біологічного впливу випромінювання на конкретну людину, тобто індивідуальним критерієм небезпеки, зумовленим іонізуючим випромінюванням. За одиницю вимірювання еквівалентної дози прийнятий зіверт (Зв). Зіверт дорівнює поглинутій дозі в 1 Дж/кг (для рентгенівського та а, b випромінювань). Позасистемною одиницею служить бер (біологічний еквівалент рада). 1 бер = 0,01 Зв.Кінцевий результат поглинання організмом іонізуючого проміння залежить від багатьох чинників, але насамперед -- від кількості енергії, яка виділилася в ньому.Тому у дозиметрії основним поняттям є "поглинута доза" D (часто його скорочують до одного слова "доза"). Вона визначається як відношення всієї поглинутої енергії Е до маси речовини т, у якій вона спричинила іонізацію і радіоліз (радіаційний розклад) молекул: D = Elm (Дж/кг = Гр).Одиницею дози є грей, названий на честь англійського фізика С. Грея, одного із засновників радіаційної дозиметрії.Якщо людина отримує дозу 1 Гр, то в кожному кілограмі її тіла іонізуючі агенти виділять енергію 1 Дж. Стільки ж енергії виділяє камінь масою 1 кг, впавши з висоти 10 см. Тому може видатися, що це незначна енергія і шкідливі наслідки малоймовірні, адже тіло нагріється лише на 0,00024 °С.На жаль, це не так, і така доза негативно позначається на здоров'ї. Причиною є особлива токсичність вторинних продуктів дії радіації, своєрідне біологічне посилення фізичної дії іонізуючого випромінювання .З огляду на особливості всіх видів випромінювання можна чекати різної шкідливості однакових доз кожного з них. Експерименти підтверджують це припущення: поглинутий тілом джоуль енергії а-частинок майже у 10 разів шкідливіший від аналогічної енергії (3-частинок чи у-променів. Тому вважають, що коефіцієнт якості (фактично, шкідливості) а-частинок ka = 10, а pi-частинок і у-променів відповідно kg = 1, k = 1.Якщо врахувати цю неоднакову "ефективність" різних іонізуючих агентів, то можна запровадити "ближчу до суворої прози життя" так звану еквівалентну дозу, її позначають Н і вимірюють у зівертах (Зв), названих так на честь шведського вченого Р. Зіверта.Тут використано припущення, що біодії окремих агентів лише додаються, а не перемножуються з додатковим посиленням їх спільної дії. Експерименти свідчать, що суттєві відхилення від формули (9.3) і припущення про підсумовування спостерігаються рідко. Причиною відхилень може бути аномальний стан особи, приймання нею наркотиків, інтенсивне куріння тютюну та інші негативні впливи індивідуального характеру. Зіверт не став загальновживаною і поширеною одиницею. Традиційно дотепер використовується бер (біологічний еквівалент рада). Не розглядатимемо деталей його появи і причини такої назви, а тільки зазначимо, що зіверт у сто разів більший за бер, отже, 1 Зв = 100 бер.Окрім еквівалентної дози існує ще "детальніша" ефективна еквівалентна доза, яка теж вимірюється у зівертах, але додатково враховує під час повного опромінення тіла велику вразливість статевих органів і червоного кісткового мозку та значно меншу решти тіла. Надалі ми використовуватимемо лише зіверт і бер. Хоч зв'язку з дозою в берах (Зв) та рівнем пошкодження особи радіацією не встановлено так добре, як для лабораторних тварин, та все ж за роки ближчого знайомства (як правило, небажаного, під час аварій) з іонізуючим випромінюванням вчені поступово нагромадили достатньо інформаціїРОЗДІЛ 2. ДІЯ ТЕХНОГЕННОГО ІОНІЗУЮЧОГО ВИПРОМІНЮВАННЯ НА ОРГАНІЗМ ЛЮДИНИ2.1 Біологічна дія іонізуючого випромінюванняЛюдина зазнає опромінення двома способами -- зовнішнім та внутрішнім. Якщо радіоактивні речовини знаходяться поза організмом і опромінюють його ззовні, то у цьому випадку говорять про зовнішнє опромінення. А якщо ж вони знаходяться у повітрі, яким дихає людина, або у їжі чи воді і потрапляють всередину організму через органи дихання та кишково-шлунковий тракт, то таке опромінення називають внутрішнім. .Перед тим, як потрапити до організму людини, радіоактивні речовини проходять складний маршрут у навколишньому середовищі, і це необхідно враховувати при оцінці доз опромінення, отриманих від того чи іншого джерела.Внутрішнє опромінення в середньому становить 2/3 ефективної еквівалентної дози опромінення, яку людина одержує від природних джерел радіації. Воно надходить від радіоактивних речовин, що потрапили в організм з їжею, водою чи повітрям. Невеличка частина цієї дози припадає на радіоактивні ізотопи (типу вуглець-14, тритій), що утворюються під впливом космічної радіації. Все інше надходить від джерел земного походження. В середньому людина одержує близько 180 мкЗв/рік за рахунок калію-40, який засвоюється організмом разом із нерадіоактивним ізотопом калію, що є необхідним для життєдіяльності людини. Проте значно більшу дозу внутрішнього опромінення людина одержує від нуклідів радіоактивного, ряду урану-238 і в меншій кількості від радіонуклідів ряду торію-232.Під впливом іонізаційного випромінювання атоми і молекули живих клітин іонізуються, в результаті чого відбуваються складні фізико-хімічні процеси, які впливають на характер подальшої життєдіяльності людини.Згідно з одними поглядами, іонізація атомів і молекул, що виникає під дією випромінювання, веде до розірвання зв'язків у білкових молекулах, що призводить до загибелі клітин і поразки всього організму. Згідно з іншими уявленнями, у формуванні біологічних наслідків іонізуючих випромінювань відіграють роль продукти радіолізу води, яка, як відомо, становить до 70% маси організму людини.При іонізації води утворюються вільні радикали Н+ та ОН-, а в присутності кисню -- пероксидні сполуки, що є сильними окислювачами. Останні вступають у хімічну взаємодію з молекулами білків та ферментів, руйнуючи їх, в результаті чого утворюються сполуки, не властиві живому організму. Це призводить до порушення обмінних процесів, пригноблення ферментних і окремих функціональних систем, тобто порушення життєдіяльності всього організму.Специфічність дії іонізуючого випромінювання полягає в тому, що інтенсивність хімічних реакцій, індуційованих вільними радикалами, підвищується, й у них втягуються багато сотень і тисячі молекул, не порушених опроміненням. Таким чином, ефект дії іонізуючого випромінювання зумовлений не кількістю поглинутої об'єктом, що опромінюється, енергії, а формою, в якій ця енергія передається. Жоден інший вид енергії (теплова, електрична та ін.), що поглинається біологічним об'єктом у тій самій кількості, не призводить до таких змін, які спричиняє іонізуюче випромінювання.Також необхідно відзначити деякі особливості дії іонізуючого випромінювання на організм людини:- органи чуття не реагують на випромінювання;- малі дози випромінювання можуть підсумовуватися і накопичуватися в організмі (кумулятивний ефект);- випромінювання діє не тільки на даний живий організм, але і на його спадкоємців (генетичний ефект);- різні органи організму мають різну чутливість до випромінювання.Найсильнішого впливу зазнають клітини червоного кісткового мозку, щитовидна залоза, легені, внутрішні органи, тобто органи, клітини яких мають високий рівень поділу. При одній і тій самій дозі випромінювання у дітей вражається більше клітин, ніж у дорослих, тому що у дітей всі клітини перебувають у стадії поділу.
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.