бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Расчеты объема выпускаемой продукции производственным предприятием

Расчеты объема выпускаемой продукции производственным предприятием

38

2611:27

Содержание

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5

Задача 1

Для изготовления продукции двух видов А и Б предприятие расходует ресурсы, а от реализации этой продукции получает доход. Информация о нормах затрат ресурсов на единицу выпускаемой продукции, запасах расходуемых ресурсов, имеющихся в распоряжении предприятия, и выручки от реализации готовой продукции приведены в таблице.

Наименование ресурсов

Норма затрат на

Объем

ресурса

Продукт А

Продукт В

Сырье (кг)

1

4

314

Оборудование (ст.час.)

3

5

535

Трудоресурсы(чел.час.)

2

4

368

Цена реализации (руб.)

165

456

Задача предприятия заключается в том, чтобы разработать программу выпуска, обеспечивающую получение максимальной выручки от реализации готовой продукции.

Требуется :

1. Построить математическую модель оптимизации выпуска продукции и записать ее в форме задачи линейного программирования.

2. Используя графический метод решения задачи линейного программирования, найти оптимальную программу выпуска продукции.

3. Записать задачу, двойственную к задаче оптимизации выпуска продукции.

4. Используя условия «дополняющей нежесткости», найти оптимальное решение двойственной задачи.

5. Привести экономическую интерпретацию переменных и оптимального решения двойственной задачи.

6. Провести графический анализ устойчивости изменения объемов используемых ресурсов. Найти функции предельной полезности ресурсов и построить их графики. Определить функциональную зависимость максимальной выручки объемов используемых ресурсов, построить графики этих функций.

Решение.

1.1. В нашей задаче необходимо определить месячные объемы выпуска продукции вида А и Б. Обозначим эти объемы как переменные модели:

х1 - месячный объем выпуска продукции А,

х2 - месячный объем выпуска продукции Б.

Используя данные таблицы, получим:

расход сырья = х1 +4х2,

затраты времени работы оборудования = 3х1 + 5х2,

затраты рабочего времени = 2х1 + 4х2.

Так как ежемесячный расход ресурсов не может превышать их максимально возможный месячный размер, то имеем ограничения

х1 + 4х2 ? 314

3х1 +5 х2 ? 535

2х1 + 4х2 ? 368

Еще одно неявное ограничение состоит в том, что переменные х1 и х2 должны быть неотрицательны, т.е. х1 0, х20.

Целевая функция модели должна выражать основную цель деятельности предприятия. В нашем примере это получение максимальной выручки от реализации произведенной в течении месяца продукции. Если обозначить функцию размера выручки через Z, то Z = 106х1 + 181х2,

а основная цель предприятия может быть выражена так:

Максимизировать целевую функцию Z=165х1 + 456х2,

Перепишем это условие в следующей форме: Z = 165х1 + 456х2 max.

Таким образом, математическая модель оптимизации выпуска продукции может быть записана в следующем виде.

Найти неизвестные значения переменных х1 и х2, удовлетворяющие ограничениям

х1 + 4х2 ? 314

3х1 +5 х2 ? 535

2х1 + 4х2 ? 368

х1 ?0, х2?0

и доставляющих максимальное значение целевой функции Z = 165х1 + 456х2 max.

Построенная модель является задачей линейного программирования. Любое решение, удовлетворяющее ограничениям модели, называется допустимым, а допустимое решение, доставляющее максимальное значение целевой функции, называется оптимальным.

1.2. Нахождение оптимальной производственной программы выпуска продукции.

Решение задачи линейного программирования с двумя переменными может быть получено графическим способом.

Построим множество допустимых решений или область допустимых решений. Проводим перпендикулярные оси координат: горизонтальная - ось Ох1, вертикальная - Ох2. Условия неотрицательности переменных х1 0, х20 показывают, что область допустимых решений будет лежать в первом квадранте системы координат. Для изображения на плоскости множества точек, координаты которых удовлетворяют оставшимся ограничениям модели, рассмотрим уравнения, получаемые из неравенств модели заменой знака «» на знак «=». В результате такой замены получим три линейных уравнения прямых:

х1 + 4х2 = 314 (1)

3х1 +5 х2 = 535 (2)

2х1 + 4х2 = 368 (3)

х1 ?0, х2?0

Для того, чтобы провести на плоскости прямую линию, достаточно знать любые две различные точки, лежащие на этой прямой. Рассмотрим уравнение первой прямой. Если положить х1 = 0, то х2 =78,5, а при х2 = 0, х1 = 314. Обозначим эту прямую как линия (1).

Прямая (2) проходит через точки с координатами (0;107) и (178,3;0).

Прямая (3) проходит через точки с координатами (0;92) и (184;0).

Каждая прямая делит плоскость на две полуплоскости. Точки расположенные по одну сторону прямой, удовлетворяют соответствующему неравенству, а точки, расположенные по другую сторону, не удовлетворяют. Для того, чтобы определить искомую полуплоскость, выбирается некоторая «тестовая» точка и ее координаты подставляются в левую часть неравенства. Если для этой точки неравенство выполняется, то она лежит в искомой полуплоскости, т.е. все точки этой полуплоскости удовлетворяют неравенству модели. Если же для «тестовой» точки неравенство не выполняется, то искомой будет та полуплоскость, которая не содержит эту точку. Взяв в качестве «тестовой» точку с координатами (0;0), убеждаемся, что она удовлетворяет всем неравенствам модели.

Следовательно, все полуплоскости, соответствующие неравенствам модели, содержат точку (0,0).

Точки множества допустимых решений должны удовлетворять всем ограничениям. Следовательно, множество допустимых решений является пересечением всех допустимых полуплоскостей и представляет собой многоугольник АВСDО. Любая точка, расположенная внутри этого многоугольника или на любом отрезке его границы, является допустимым решением, т.е. удовлетворяет всем ограничениям модели.

Для нахождения оптимального решения задачи необходимо определить направление возрастания целевой функции.

Вектор, компоненты которого являются коэффициентами целевой функции при переменных х1 и х2, называют вектором - градиентом целевой функции и обозначают grad Z.

Целевая функция может возрастать до тех пор, пока линии уровня соответствующие возрастающим значениям этой функции, пересекают область допустимых решений. Точка пересечения области допустимых решений и линии уровня, соответствующей максимально возможному значению целевой функции, и будет точкой максимума.

На рисунке видно, что оптимальное решение соответствует точке В, лежащей на пересечении прямых (1) и (3). Поэтому ее координаты находим как решение системы линейных уравнений, задающих эти прямые:

х1 + 4х2 = 314

2х1 + 4х2 = 368

Решая эту систему находим х1* = 54, х2*= 65 . При этом значение целевой функции Z = 165х1* + 462х2* = 38550.

Полученное решение означает, что предприятию необходимо ежемесячно производить 54 единиц продукции А и 65 единиц продукции Б, что позволит ему получать максимальную месячную выручку в размере 38550 рублей.

1.3. Построение двойственной задачи.

Найти неизвестные значения переменных u1, u2, u3 , удовлетворяющих ограничениям:

u1 + 3u2 + 2u3 ? 165

4u1 + 5u2 + 4u3 ? 456

u1 ?0, u2 ?0, u3 ? 0

и доставляющих минимальное значение целевой функции

W = 314u1 + 535u2 + 368u3 min.

1.4. Нахождение оптимального решения двойственной задачи.

Для рассматриваемой нами задачи условия «дополнительной нежесткости» имеют вид:

u1 (314 - x1- 4x2 )= 0 x1(u1 + 3u2 + 2u3 - 165)= 0

u2(535 - 3x1 - 5x2)= 0 x2(4u1 + 5u2 + 4u3 - 456) = 0

u3(368 - 2x1 - 4x2)= 0 u1 0, u2 0, u3 0,

Подставляя в них найденные значения х1* = 54, х2*= 65, получим:

так как х1* = 54, то u1 + 3u2 + 2u3 - 165= 0

так как х2* = 65, то 4u1 + 5u2 + 4u3 - 456= 0

так как 535 - 3x1 - 5x20, то u2* = 0.

Получаем систему уравнений:

u1 + 3u2 + 2u3 - 165= 0

4u1 + 5u2 + 4u3 - 456= 0

u2=0

Решая эту систему, находим оптимальные значения переменных двойственной задачи:

u1* = 63, u2* = 0, u3* = 51

Вычислим оптимальное значение целевой функции двойственной задачи:

W = 314 ? 63 + 535 ? 0 + 368 ? 51 =38550, т.е. Z* = W*, что соответствует первой теореме двойственности.

1.5. Экономическая интерпретация переменных и оптимального решения двойственной задачи.

Для исследуемой задачи оптимизации производственной программы получим

u1 - стоимостная оценка сырья, ее размерность [руб./1 кг сырья];

u2 - стоимостная оценка времени работы оборудования, ее размерность [руб./1 ст.час];

u3 - стоимостная оценка трудовых ресурсов, [руб./1 чел.-час];

u1* = 63 означает, что при изменении количества сырья с 63 стан.-час до 63 + ?s, изменение максимальной суммарной выручки составит u1* ?s (руб.) = 63?s (руб).

u2* = 0 означает, что ни увеличение, ни уменьшение месячного количества оборудования не приведет к изменению оптимального значения суммарной выручки .

u3* = 51 означает, при изменении месячного размера трудоресурсов с 51 стан.-час до 51 + ?t, изменение максимальной суммарной выручки составит u3* ?t (руб.) = 51?t (руб).

1.6. Графический анализ устойчивости сырья

Количество используемого сырья S=х1 + 42 .

Если S[0; S(D)], то точкой максимума является точка E(0; x1) пересечения оси Ох1 и прямой ограничения по сырью (1).

Если S[S(D); S(C)], то точкой максимума является точка R(x1; x2) отрезка DC пересечения прямой ограничения по сырью и прямой (2)

Если S[S(C); S(Р)], то точкой максимума является точка Q(x1; x2) отрезка CР пересечения прямой ограничения по сырью и прямой (3)

Если S[S(Р); ], то точкой максимума является точка Р(0; x2) пересечения прямой (3) и оси Ох2.

Координаты точки Е находятся из системы уравнений

х1 + 4х2 = S

х2 = 0

Решаем ее:

х1 = S , х2 = 0.

Z*(S) = 165х1* + 456х2* =165S; u1 = 165; u2= 0; u3 = 0

Координаты точки R находим из системы уравнений

х1 + 4х2 = S

3х1 + 5х2 =535

Решаем ее:

х1 = (2140 - 5S)/7, х2 = (3S-535)/7.

Z*(S) = 165х1* + 456х2* = 165 (2140 - 5S)/7+ 456 (3S-535)/7= 77,6S+ 15591,4;

u1 = 77,6; u2= 0; u3 = 0.

Координаты точки Q находим из системы уравнений

х1 + 4х2 = S

2х1 + 4х2 = 368

Решаем ее:

х1 = 368-S, х2 = (2S-368)/4.

Z*(S) = 165х1* + 456х2* = 165 (368-S)+ 456 (2S-368)/4= 63S+ 18768;

u1 = 25; u2= 0; u3 = 0.

Координаты точки Р

х1 = 0, х2 =92.

Z*(S) = 165х1* + 456х2* = 41952

u1 = 0; u2= 0; u3 = 0.

S(D)= х1 + 4х2 =178,3+40=178,3,

S(C)= х1 + 4х2 =150+417=218

S(Р)= х1 + 4х2 =0+492=368

S 0?S<178,3 178,3?S<218 218?S<368 S?368

u1*(S) 165 77,6 63 0

Z*(S) 165S 77,6S+ 15591,4 63S+ 18768 41952

Интервал устойчивости [218;368)

Задача 2

Малое предприятие намерено организовать в следующем квартале выпуск продукции А и Б, пользующейся высоким спросом на рынке. Предприятие располагает необходимым сырьем и оборудованием и может привлечь квалифицированных рабочих на условиях почасовой оплаты, но не имеет средств на оплату труда рабочих. Для этого оно может получить в банке кредит сроком на три месяца под 40% годовых с погашением кредита и процентов по нему в конце квартала.

Информация о нормах затрат сырья, оборудования и трудовых ресурсов, объемах сырья и парка оборудования, имеющихся в распоряжении предприятия, размер выручки от реализации продукции А и Б приведены в таблице:

Наименование ресурсов

Норма затрат на

Объем

ресурса

Продукт А

Продукт В

Сырье (кг)

3

3

2070

Оборудование (ст.час.)

3

5

2250

Трудоресурсы(чел.час.)

2

3

?

Цена реализации (руб.)

638

660

Целью организации выпуска новой продукции является получение максимальной суммарной прибыли, которая определяется как разность между суммарной выручкой, полученной от реализации произведенной за квартал продукции А и Б, и затратами, связанными с обеспечением кредита (возврат суммы кредита и начисленных процентов).

Требуется:

1. Построить математическую модель оптимизации выпуска продукции с использованием кредита для выплаты зарплаты рабочими с произвольной почасовой ставкой t (руб./чел.-час) оплаты труда.

2. Определить оптимальную программу выпуска продукции, максимальную прибыль, необходимый размер кредита, сумму уплаченных процентов и потребность в трудовых ресурсах, если почасовая ставка t оплаты труда равна 10 руб./чел.-час.

3. Найти функцию спроса на трудовые ресурсы, как функцию почасовой ставки оплаты труда t, построить график этой функции. Исследовать зависимость размеров максимальной прибыли и кредита, обеспечивающего ее получение, от почасовой ставки t оплаты труда в диапазоне от 10 до 30 рублей за чел.-час. Найти функции, выражающие эти зависимости, и построить их графики.

Решение.

2.1 Построение математической модели оптимизации выпуска продукции.

Для построения модели введем следующие обозначения:

х1 - объем выпуска продукции А,

х2 - объем выпуска продукции Б,

S - потребность в трудовых ресурсах,

t - почасовая ставка оплаты труда,

V - размер кредита,

Z - выручка от реализации произведенной продукции,

P - прибыль предприятия.

Выразим в математической форме основные условия и ограничения рассматриваемой задачи.

Ограничения по использованию сырья: 3x1 + 3x2 2070;

Ограничения по использованию оборудования: 3x1 + 5x2 2250;

Потребность в трудовых ресурсах S определяется необходимыми затратами труда для выпуска продукции в объемах х1 и х2:

S = 2x1 + 3x2 .

Размер необходимого кредита определяется, исходя из потребности в трудовых ресурсах S и почасовой ставки оплаты труда t, т.е.

V=tS = t(2x1 + 3x2).

Выручка от реализации произведенной продукции:

Z = 638x1 + 660x2

Сумма расходов по обслуживанию кредита определяется размером возвращаемого кредита и процентов по нему, т.е. равна 40% 3

V = V + 0.1V = 1.1V.

Прибыль предприятия определяется как разность между выручкой и расходами по обслуживанию кредита, т.е.

Р = Z - 1.1V.

Подставляя в эту формулу выражения для Z и V, получим

Р = (638x1 + 660x2)- 1,1 t(2x1 + 3x2) = (638 - 2,2t)х1 + (660 - 3,3 t)х2

Следовательно, математическая модель оптимизации выпуска продукции с привлечением кредитных ресурсов для оплаты труда рабочих принимает следующий вид:

Найти неизвестные значения объемов выпуска х1, х2, удовлетворяющих ограничениям

3x1 + 3x2 2070

3x1 + 5x2 2250 (1)

х10, х20,

и доставляющих максимальное значение целевой функции:

Р = (638 - 2,2t)х1 + (660 - 3,3 t)х2 > max.

При этом необходимый размер кредита V определяется по формуле:

V = tS = 2tx1* + 3tx2*,

где х1*, х2* - оптимальное решение задачи (1). Модель (1) представляет собой задачу параметрического линейного программирования, так как в ее условиях содержится параметр t, от значения которого зависит оптимальное решение.

2.2 Определение оптимальной программы выпуска продукции.

При фиксированной ставке оплаты труда t = 10 руб./чел.-час. математическая модель (1) примет вид:

3x1 + 3x2 2070

3x1 + 5x2 2250

х10, х20, Р = 616 х1 + 627х2 > max.

Графическое решение задачи изображено на рис. Точкой максимума является точка В с координатами х1* = 600, х2*= 90.

Максимальный размер прибыли:

Р* = 616600 + 627 90= 426030 (руб.),

Размер необходимого кредита:

V* = 2tx1* + 3x2* = 210600 + 31090 =14700 руб.,

Сумма уплаченных процентов: 0,1V* = 0,1 14700= 1470руб.

Потребность в трудовых ресурсах: S* = 2x1* +3 x2* = 2600 + 390 = 1470(чел.-час.).

2.3 Нахождение функции спроса на трудовые ресурсы

Потребность в трудовых ресурсах S для обеспечения оптимального выпуска в объемах х1*, х2* определяются соотношением: S* = 2x1* + 3x2*,

Но оптимальный план выпуска Х* = (x1* , x2*), зависит от почасовой ставки t оплаты труда. Следовательно, величина S также зависит от t, т.е. потребность в трудовых ресурсов S есть некоторая функция от параметра t.

Найдем эту функцию. Для этого рассмотрим модель (1) и определим оптимальные планы выпуска Х* = (x1* , x2*) при различных значениях t, используя графический метод решения задачи линейного программирования.

Пусть t достаточно мало (близко к нулю). Рассмотрим уравнение линии уровня целевой функции Р = (638 - 2,2t)х1 + (660 - 3,3 t)х2= h.

При малых значениях t прямая с таким уравнением будет почти параллельна прямой с уравнением Р = 638 х1 + 660 х2 = h.

Если «закрепить» линию уровня в т.В и начать увеличивать значение параметра t, то точка пересечения линии уровня с осью Ох2 начнет перемещаться вверх по оси Ох2.

Найдем значение t, при котором линия уровня параллельна ВС. Из равенства угловых коэффициентов получаем:

, t =20

Следовательно, точка В (600;90) остается точкой максимума пока t[0;20).

Найдем максимальный размер прибыли для t[0;20):

Р* = (638 - 2,2t) 600 + (660 - 3,3 t)90 = 442200- 1617t (руб.),

Размер необходимого кредита:

V* = 2tx1* + 3x2* = 2t600 +3t90 = 1470t руб.,

Сумма уплаченных процентов:

0,1V* = 0,1 1470t = 147t руб.

Потребность в трудовых ресурсах:

S* = 2x1* + 3x2* = 2600 +390 =1470 (чел.-час.).

Если t=20, то оптимальное решение будет достигаться на отрезке ВС, концы которого имеют координаты В(600;90) и C(690;0).

Если «закрепить» линию уровня в т.С и начать увеличивать значение параметра t, то линия уровня будет приближаться к оси Ох1.

Найдем значение t, при котором линия уровня параллельна оси Ох1. Из равенства угловых коэффициентов получаем:

; t = 220 > 60.

Если t[20; 30] точкой максимума станет точка С(690;0).

Найдем максимальный размер прибыли для t[20;30]:

Р* = (638 - 2,2t) 690 + (660 - 3,3 t)0 = 440220 - 1518t (руб.),

Размер необходимого кредита:

V* = 2tx1* + 3x2* = 2t690 +3t0=1380t руб.,

Сумма уплаченных процентов: 0,1V* = 138tруб.

Потребность в трудовых ресурсах:

S* = 2x1* + 3x2* = 2690 +30 = 1380(чел.-час.).

Таблица: Итоги решения задачи

Почасовая оплата труда t (руб.)

Оптималь-ный план выпуска Х*(t)= (x1*,x2*)

Величина спроса на трудовые ресурсы S*(t) (чел.-час.)

Размер необходимого кредита V*(t), (руб.)

Величина максимальной прибыли Р*(t) (руб.)

t = 10

(600;90)

1470

14700

426030

t(10;20)

(600;90)

1470

1470t

442200- 1617t

t = 20

Отрезок ВС

[1380; 1470]

[27600;29400]

409860

t(20;30]

(690;0)

1380

1380t

440220 - 1518t

Задача 3

Максимизация объема выпускаемой продукции в условиях ограниченных финансовых ресурсов

Фирма при производстве продукции использует два вида ресурсов: рабочую силу (L, тыс. чел.-час.) и оборудование (K, тыс. ст.-час.). Производственная функция (ПФ) фирмы, построенная путем обработки статистических данных, имеет вид:

,

где Y -- объем выпуска продукции (ед.).

Требуется:

Построить графики ПФ при фиксированном значении одной из переменных: а) K = 441; б) L =63.

Найти уравнения изоквант ПФ и построить их графики для Y1=656, Y2 =984, Y3=1312.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.