бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Естествознание и человек

Естествознание и человек

13

Содержание

  • 1. Общенаучные методы (анализ и синтез, аналогия и моделирование)
    • 2. Глобальные экономические проблемы и их пути развития
    • 3. Строение и взаимодействие химических веществ
    • 4. Современная теория химической эволюции
    • 5. Методология исследования химической эволюции
    • Литература
1. Общенаучные методы (анализ и синтез, аналогия и моделирование)

Эмпирический уровень познания - это процесс мыслительной - языковой - переработки чувственных данных, вообще информации, полученной с помощью органов чувств. Такая переработка может состоять в анализе, классификации, обобщения материала, получаемого посредством наблюдения. Здесь образуются понятия, обобщающие наблюдаемые предметы и явления. Таким образом формируются эмпирический базис тех или иных теорий.

Для теоретического уровня познания характерно то, что "здесь включается деятельность мышления как другого источника знания: происходит построение теорий, объясняющих наблюдаемые явления, открывающих законы области действительности, которая является предметом изучения той или иной теории".

Общенаучными методами, применяемыми как на эмпирическом, так и на теоретическом уровнях познания являются такие методы как: анализ и синтез, аналогия и моделирование.

Анализ - это прием мышления, связанный с разложением изучаемого объекта на составные части, стороны, тенденции развития и способы функционирования с целью их относительно самостоятельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, признаки.

Он занимает важное место в изучении объектов материального мира. Но он составляет лишь первоначальный этап процесса познания.

Метод анализа применяют для изучения составных частей предмета. Будучи необходимым приемом мышления, анализ является лишь одним из моментов процесса познания.

Средством анализа является манипулирование абстракциями в сознании, т.е. мышление.

Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в совокупности, в единстве. Осуществить этот второй этап в процессе познания - перейти от изучения отдельных составных частей объекта к изучению его как единого связанного целого - возможно только в том случае, если метод анализа дополняется другим методом - синтезом.

В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т.п.) изучаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого.

Анализ фиксирует в основном то специфическое, что отличает части друг от друга. Синтез раскрывает место и роль каждого элемента в системе целого, устанавливает их взаимосвязь, то есть позволяет понять то общее, что связывает части воедино.

Анализ и синтез находятся в единстве. По своему существу они - "две стороны единого аналитико-синтетического метода познания". "Анализ, предусматривающий осуществление синтеза, имеет своим ядром выделение существенного".

Анализ и синтез берут свое начало в практической деятельности. Постоянно расчленяя в своей практической деятельности различные предметы на их составные части, человек постепенно научался разделять предметы и мысленно. Практическая деятельность складывалась не только из расчленения предметов, но и из воссоединения частей в единое целое. На этой основе возникал и мыслительный процесс.

Анализ и синтез являются основными приемами мышления, имеющими свое объективное основание и в практике, и в логике вещей: процессы соединения и разъединения, создания и разрушения составляют основу всех процессов мира.

На эмпирическом уровне познания применяют прямой анализ и синтез, для первого поверхностного ознакомления с объектом исследования. Они обобщают наблюдаемые предметы и явления.

На теоретическом уровне познания применяют возвратный анализ и синтез, которые осуществляются путем многократного возврата от синтеза к повторному анализу. Раскрывают наиболее глубокие, существенные стороны, связи, закономерности, присущие изучаемым объектам, явлениям.

Эти два взаимосвязанных приема исследования получают в каждой отрасли науки свою конкретизацию. Из общего приема они могут превращаться в специальный метод, так существуют конкретные методы математического, химического и социального анализа. Аналитический метод получил свое развитие и в некоторых философских школах и направлениях. То же можно сказать и о синтезе.

Аналогия - это "правдоподобное вероятное заключение о сходстве двух предметов в каком-либо признаке на основании установленного их сходства в других признаках". Аналогия лежит в природе самого понимания фактов, связывающая нити неизвестного с известным. Новое может быть осмысленно, понято только через образы и понятия старого, известного. Первые самолеты были созданы по аналогии с тем, как ведут себя в полете птицы, воздушные змеи и планеры.

Несмотря на то, что аналогии позволяют делать лишь вероятные заключения, они играют огромную роль в познании, так как ведут к образованию гипотез, т.е. научных догадок и предположений, которые в ходе дополнительного исследования и доказательства могут превратиться в научные теории. Аналогия с тем, что известно, помогает понять то, что неизвестно. Аналогия с тем, что является относительно простым, помогает понять то, что является более сложным. Так, по аналогии с искусственным отбором лучших пород домашних животных Ч. Дарвин открыл закон естественного отбора в животном и растительном мире. Наиболее развитой областью, где часто используют аналогию как метод, является так называемая теория подобия, которая широко применяется при моделировании.

Одной из характерных черт современного научного познания является возрастание роли метода моделирования.

Моделирование основано на подобии, аналогии, общности свойств различных объектов, на относительной самостоятельности формы.

Моделирование - это "метод исследования, при котором интересующий исследователя объект замещается другим объектом, находящимся в отношении подобия к первому объекту". Первый объект называется оригиналом, а второй - моделью. В дальнейшем знания, полученные при изучении модели, переносятся на оригинал на основании аналогии и теории подобия. Моделирование применяется там, где изучение оригинала невозможно или затруднительно и связанно с большими расходами и риском. Типичным приемом моделирования является изучение свойств новых конструкций самолетов на их уменьшенных моделях, помещенных в аэродинамическую трубу. Моделирование может быть предметным, физическим, математическим, логическим, знаковым. Все зависит от выбора характера модели.

Модель представляет собой средство и способ выражения черт и соотношений объекта, принятого за оригинал. Модель - это объективированная в реальности или мысленно представляемая система, заменяющая объект познания.

Моделирование всегда и неизбежно связано с некоторым упрощением моделируемого объекта. Вместе с тем оно играет огромную роль, являясь предпосылкой новой теории.

В основании такого ныне очень широко распространенного в науке приема исследования, как моделирование лежит умозаключения по аналогии. Вообще моделирование в силу своего сложного комплексного характера скорее может быть отнесено к классу методов исследования или приемов.

2. Глобальные экономические проблемы и их пути развития

Интернационализация хозяйственных и научно-технических связей привело к возрастанию глобальных проблем человеческой цивилизации. К ним относятся прежде всего проблемы военной угрозы, малоразвитость значительной части мира, продовольственный, энергетический и др. кризисы. Они оказывают воздействие на структуру мирового и национального воспроизводства, динамику экономических процессов.

Характерная черта глобальных проблем - их мера значимости для общественного развития. Это касается как экологических, так и проблем безопасности при решении социальных конфликтов и т.д.

Оптимизация окружающей среды - это предпосылка общественного развития. Кроме того, поскольку познание законов развития общества невозможно без изучения и использования законов природы, вмешательство в любой глобальный процесс неизбежно влечет за собой цепные реакции, распространенные на многие сферы.

Еще одной характерной чертой глобальных противоречий является то, что их источники в основной своей массе позитивны, т.е. связаны с ростом производства и благосостояния людей.

Для характеристики глобальных проблем можно использовать

классификацию, принятую международными организациями.

1. Проблемы, связанные с основными социально-экономическими и политическими задачами человечества:

предотвращение мировой войны;

не милитаризация Космоса;

предотвращение гонки вооружений и разоружение;

создание благоприятных условий для мирового социального прогресса,

преодоление отставания в развитии слаборазвитых стран.

2. Комплекс проблем, касающихся взаимоотношений человека, общества и НТР:

эффективность использования достижений НТР;

проведение демографической политики;

совершенствование системы образования;

ликвидация негативного влияния техники на человека.

3. Проблемы, связанные с социально-экономическими процессами и окружающей средой:

решение сырьевой, энергетической и продовольственной проблем;

мирное освоение Космоса и богатств Мирового океана;

устранение дефицита демократии и борьба с репрессиями.

Данная классификация выделяет только первоочередные задачи, стоящие перед мировым сообществом.

Глобальные проблемы развития человечества не обособлены друг от друга, а действуют в единстве и во взаимосвязи, что требует кардинально новых, концептуальных подходов к их решению.

Глобализация экономики консолидируется с ее устойчивым развитием. В настоящее время теоретиков, государственных деятелей, политиков в большей степени занимают не проблемы темпов роста, а проблемы устойчивого развития экономики, ибо стабильность обеспечивает гарантию экономического прогресса общества.

Глобализация или устойчивое развитие не являются чем-то принципиально новым в истории общества, наоборот, то и другое является одним из самых древних принципов природы, которым человек должен следовать в силу развития заложенных в нем самой природой закономерностей, состоящих в соблюдении симметрии явлений природы.

3. Строение и взаимодействие химических веществ

Характер любой системы, как известно, зависит не только от ее строения и состава ее элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходится заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия элементов химических систем, тем не менее, все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействий их элементов.

В качестве первичной химической системы рассматривалась при этом молекула, и поэтому когда речь заходила о структуре веществ, то имелась в виду именно структура молекулы как наименьшей единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались, уточнялись и конкретизировались, начиная от общих предположений отвлеченного характера и кончая гипотезами, обоснованными с помощью определенных химических экспериментов. По мнению известного шведского химика Й. Берцелиуса (1779 - 1848), структура молекулы имеет дуалистический характер, так как связана с взаимодействием разноименно заряженных атомов или атомных групп. Так, например, любая соль, образуемая основанием и кислотой, имеет положительный и отрицательный электрические заряды. Но дуалистическая гипотеза структуры молекулы подверглась серьезной критике. Она, например, не могла объяснить многочисленные примеры строения молекул, которые образуют прочные связи со своими атомами. Поэтому еще французский химик Ш. Жерар (1816 - 1856) справедливо указывал на весьма ограниченный характер представлений, развитых Берцелиусом. В противовес этому он подчеркивал, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так что в результате возникает определенная целостность, или, как мы сказали бы теперь, система. Однако эти общие и в целом правильные представления не содержали фактических указаний, как применить их на практике для синтеза новых химических соединений и получения веществ с заранее заданными свойствами.

Такую попытку раскрытия структуры молекул и синтеза новых веществ осуществил известный немецкий химик Ф. Кекуле (1829 - 1896). Он стал связывать структуру с понятием валентности элемента, или числа единиц его химического сродства. Известно, что некоторые элементы обладают определенной валентностью (от лат. valentia - сила, способность) образовывать соединения с другими элементами. Валентность как раз и определяет, с каким числом атомов способен соединяться атом данного элемента. Например, атом водорода способен соединяться с одним атомом другого элемента, атом кислорода - с двумя атомами, атом азота - с тремя атомами, а углерода - с четырьмя. Соответственно этому различают одновалентные, двух-, трех - и четырехвалентные элементы. Следовательно, валентность любого элемента может быть определена как число атомов одновалентного элемента, с которыми может взаимодействовать один атом данного элемента. Так, например, один атом кислорода, соединяясь с двумя атомами водорода, образует воду, Н2О, и поэтому является двухвалентным элементом, а азот в соединении NH3 (аммиак) - трехвалентен. Однако такое представление о валентности нуждается в дальнейшем уточнении, так как существуют химические соединения, содержащие в своем составе ионы. Некоторые атомы, из которых они возникли, обладают способностью отдавать электроны, а другие - присоединять электроны. В результате этого полученные из них соединения обладают ионной валентностью. Существует, однако, еще большее количество соединений, которые характеризуются тем, что двум атомам одновременно принадлежит пара электронов. Связь подобного рода называется ковалентной связью, а открывший ее электронную структуру американский химик Д.Н. Льюис считает ее чисто химической связью.

На основе представлений о химическом сродстве, или валентности, и возникли те структурные формулы, которыми с незначительными видоизменениями пользуются при изучении химии, особенно органической, в школе. В этих формулах элементы связываются друг с другом, как отмечено выше, по числу единиц их сродства, или валентности. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это и составляет важнейшую задачу химической науки.

Крупный шаг в эволюции понятия химической структуры связан с теорией химического строения А.М. Бутлерова (1828-1886), который хотя и признавал, что образование новых молекул из атомов происходит за счет их химического сродства, но обращал особое внимание на степень напряжения или энергии, с которой они связываются друг с другом. Именно поэтому новые идеи Бутлерова в свое время не только нашли широкое применение в практике химического синтеза, но и получили прочное обоснование в современной квантовой химии.

Этот краткий экскурс в историю химии показывает, что эволюция понятия химической структуры осуществлялась в направлении, с одной стороны, анализа ее составных частей или элементов, а с другой - установления характера физико-химического их взаимодействия. Последнее особенно важно для ясного понимания структуры с точки зрения системного подхода, где под структурой подразумевают упорядоченную связь и взаимодействие элементов системы, благодаря которым и возникают новые системные ее свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов или ионов определяет свойства молекулы.

4. Современная теория химической эволюции

Химическая эволюция или пребиотическая эволюция - первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развертывания процессов самоорганизации, свойственных всем относительно сложным системам, которыми бесспорно являются все углеродсодержащие молекулы.

Также этими терминами обозначается теория возникновения и развития тех молекул, которые имеют принципиальное значение для возникновения и развития живого вещества.

Всё, что известно о химизме вещества, позволяет ограничить проблему Х.Э. рамками так наз. "водно-углеродного шовинизма", постулирующего, что жизнь в нашей Вселенной представлена в единственно возможном варианте: в качестве "способа существования белковых тел", осуществимого благодаря уникальному сочетанию полимеризационных свойств углерода и деполяризующих свойств жидко-фазной водной среды, как совместно необходимых и|или достаточных (?) условий для возникновения и развития всех известных нам форм жизни. При этом подразумевается, что, по крайней мере, в пределах одной сформировавшейся биосферы может существовать только один, общий для всех живых существ данной биоты код наследственности, но пока остается открытым вопрос, существуют ли иные биосферы вне Земли и возможны ли иные варианты генетического аппарата.

Также неизвестно, когда и где началась химическая эволюция. Возможны любые сроки по окончанию второго цикла звёздообразования, наступившего после конденсации продуктов взрывов первичных сверхновых звезд, поставляющих в межзвездное пространство тяжелые элементы (с атомной массой более 26). Второе поколение звёзд, уже с планетными системами, обогащенными тяжёлыми элементами, которые необходимы для реализации Х.Э. появилось через 0,5-1,2 млрд. лет после Большого взрыва. При выполнении некоторых вполне вероятных условий, для запуска Х.Э. может быть пригодна практически любая среда: глубины океанов, недра планет, их поверхности, протопланетные образования и даже облака межзвёздного газа, что подтверждается повсеместным обнаружением в космосе методами астрофизики многих видов органических веществ - альдегидов, спиртов, сахаров и даже аминокислоты глицина, которые вместе могут служить исходным материалом для Х.Э., имеющей своим конечным результатом возникновение жизни.

5. Методология исследования химической эволюции

Исследование химической эволюции осложняется тем, что в настоящее время знания о геохимических условиях древней Земли не являются достаточно полными.

Поэтому, кроме геологических, привлекаются также астрономические данные. Так, условия на Венере и Марсе рассматривают как близкие к тем, что были на Земле на различных этапах ее эволюции.

Основные данные о химической эволюции получены в результате модельных экспериментов, в ходе которых удалось получить сложные органические молекулы при различных химических составах атмосферы, гидросферы и литосферы и климатических условиях.

На основе имеющихся данных был выдвинут ряд гипотез о конкретных механизмах и непосредственных движущих силах химической эволюции.

Литература

Грушевская Т.Г., Садохин П.П. Концепции современного естествознания: Учеб. Пособие: Высшая школа, М.: 1998

Дубнищева Т.Я. Концепции современного естествознания. - Новосибирск: ЮКЭА, 1997.

Кузнецов В.Н., Идлис Г.М., Гутина В.Н. Естествознание. - М.: Агар, 1996.

Грядовой Д.Н. Концепции современного естествознания. Структурный курс основ естествознания. - М.: Учпед, 1999.

Концепции современного естествознания /под ред.С.И. Самыгина. - Ростов н/Д: Феникс, 1997.

Яблоков А.В., Юсуфов А.Г. Эволюционное учение. - М.: Высшая школа, 1998.

Рузавин Г.И. Концепции современного естествознания. - М.: "Культура и спорт", ЮНИТИ, 1997.

Солопов Е.Ф. Концепции современного естествознания. - М.: Владос, 1998.

Нудельман Р. Кембрийский парадокс. - "Знание - Сила", август, сентябрь-октябрь 1988.


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.