|
Дейтерий - меченный l-фенилаланин, продуцируемый штаммом Brevibacterium methylicum для медицинской диагностикиДейтерий - меченный l-фенилаланин, продуцируемый штаммом Brevibacterium methylicum для медицинской диагностикиДЕЙТЕРИЙ - МЕЧЕННЫЙ L-ФЕНИЛАЛАНИН, ПРОДУЦИРУЕМЫЙ ШТАММОМ Brevibacterium methylicum ДЛЯ МЕДИЦИНСКОЙ ДИАГНОСТИКИ. О. В. МОСИН Московская государственная академия тонкой химической технологии им. М.В. Ломоносова, 117571, г. Москва, просп. Вернадского, д.86. Представлены данные по биосинтезу [2H6] - L-фенилаланина, продуцируемого экзогенно штаммом факультативных метилотрофных бактерий Brevibacterium methylicum, способного ассимилировать метанол (или его дейтерий-меченный аналог) в качестве источника углерода и энергии. Микробную биоконверсию C2H3O2H проводили на минимальной среде, содержащей 98 об.% 2Н2O. Выход L-фенилаланина при этом составил 1 г/л. Анализ степени дейтерированности L-фенилаланина проводили методом масс-спектрометрии электронного удара после препаративного разделения методом обращенно-фазовой высокоэффективной жидкостной хроматографии (ВЭЖХ) в виде метилового эфира дансил - фенилаланина и карбобензокси-фенилаланина. Согласно полученным данным, степень изотопного включения дейтерия в фенилаланин составила 75 %, что свидетельствует о высокой эффективности мечения L-фенилаланина в этих условиях. Полученный [2H6]- фенилаланин может быть использован для диагностики наследственной фенилкетонурии. ВВЕДЕНИЕМетод мечения стабильными изотопами является ключевым направлением в разнопрофильных биомедицинских исследованиях с использованием аминокислот и других биологически активных соединений (БАС) [1, 2]. Тенденции к предпочтительному применению стабильных изотопов по-сравнению с радиоактивными аналогами обусловлены отсутствием радиационной опасности и возможностью определения локализации метки в молекуле методами высокого разрешения, включая спектроскопию ядерного магнитного резонанса (ЯМР) [3], инфракрасную [4] и лазерную спектроскопию [5] и масс-спектрометрию (МС) [6]. Развитие этих методов детекции стабильных изотопов за последние годы позволило значительно усовершенствовать проведение многочисленных биологических исследований с участием аминокислот de novo, а также изучать их метаболизм, механизм действия, внутриклеточный транспорт и т.п. [7,8]. Аминокислоты, меченные стабильными изотопами 2Н, 13С, 15N широко применяются как во врачебной практике и в медицинской диагностике, так и в биохимических исследованиях разнообразного характера [9, 10], а также в химических синтезах широкого круга изотопно - меченных соединений на их основе, например, меченный L-фенилаланин в синтезах пептидных гормонов и нейротрансмиттеров [11]. Изотопно-меченные аналоги L-фенилаланина находят всё большее применение в диагностических целях, например, для выявления наследственной фенилкетонурии и других заболеваний, связанных с нарушением метаболизма аминокислот в организме [12]. В настоящее время биотехнологический потенциал метилотрофных бактерий для получения аминокислот, меченных дейтерием общепризнан [13]. Традиционным подходом при этом является культивирование штаммов - продуцентов на средах, содержащих С2Н3О2Н и 2Н2О с последующим фракционированием культуральной жидкости. Раннее нами была изучена возможность использования штамма факультативных метилотрофных бактерий B. methylicum для получения фенилаланина [14-15]. В отличие от традиционных штаммов-продуцентов фенилаланина, у которых нарушены активности префенатдегидратазы или дезоксиарабиногептулозофосфатсинтетазы, уникальность этого штамма состоит в том, что для биосинтеза L-фенилаланина необходим L-лейцин. Целью данной работы было изучение принципиальной возможности получения дейтерированного L-фенилаланина с высокой степенью изотопного обогащения за счёт использования штамма факультативных метилотрофных бактерий Brevibacterium methylicum .УСЛОВИЯ ЭКСПЕРИМЕНТА. Бактериальные штаммы. Исследования проводили с L-лейцин-зависимым штаммом факультативных метилотрофных бактерий B. methylicum, продуцентом L-фенилаланина. Штамм был получен из коллекции культур Всероссийской коллекции промышленных микроорганизмов (ВКПМ) Государственного научно-исследовательского института генетики и селекции промышленных микроорганизмов. В работе использовали 2Н2O (99,9% 2Н), С2Н3О2Н (97,5 % 2Н), полученные из Российского научно-исследовательского центра “Изотоп” (Санкт-Петербург, РФ), а также N-диметиламинонафталин-5-сульфохлорид (дансилхлорид) (Sigma, CША). Для получения производных аминокислот использовали N-диметиламинонафталин-5-сульфохлорид (дансилхлорид) (Sigma, CША), карбобензоксихлорид (химзавод им. Войкова) и диазометан. Диазометан получали из N-нитрозометилмочевины (Мerck, Германия). Условия адаптации. Адаптацию штамма к дейтерию проводили на агаризованных средах (2 %-ный агар), содержащих тяжёлую воду. При этом использовали рассев культур до отдельных колоний на средах, содержащих ступенчато увеличивающиеся концентрации тяжёлой воды [9]. Культивирование бактерий проводили на минеральной среде М9 [16], как описано в работе [9]. Получение дансиламинокислот культуральной жидкости. К 200 мг лиофилизованных препаратов культуральной жидкости в 5 мл 2 м. NaHCO3 (2 10-3 моль) рН 9-10 дробными порциями при перемешивании добавляли 320 мг (1,2 10-3 моль) дансилхлорида в 5 мл ацетона. Реакционную смесь выдерживали при перемешивании при 400 С в течении часа, затем подкисляли 2 м. раствором HCL до рН 3,0 и экстрагировали этилацетатом (3 раза по 5 мл). Объединенный экстракт промывали водой до значения рН 7,0, сушили безводным сульфатом натрия, растворитель удаляли при 10 мм. рт. ст. Дансиламинокислоты в составе белковых гидролизатов B. methylicum получали как описано в работе [9]. Получение метиловых эфиров дансиламинокислот. К 20 мл 40 %-ного КОН в 40 мл эфира добавляли 3 г влажной нитрозометилмочевины и перемешивали на водяной бане со льдом в течении 15-20 мин. После интенсивного газовыделения эфирный слой отделяли и промывали ледяной водой до рН 7,0, сушили безводным NaSO4 и обрабатывали им препараты дансилпроизводных аминокислот в составе культуральной жидкости и гидролизатов белка биомассы. Аналитическое и препаративное разделение Dns-Phe-OMe проводили методом обращённо-фазовой ВЭЖХ на жидкостном хроматографе “Knauer” (ФРГ), снабженным насосом “Knauer”, УФ-детектором “2563” и интегратором “С-R 3A” (Shimadzy, Япония). Использовали неподвижную фазу: Separon SGX C 18, 7 мкм, 150 x 3,3 мм (Kova, Чехословакия). Элюирование проводили в системе растворителей: (А) - ацетонитрил-трифторуксусная кислота (20:80 об/об) и (В) - ацетонитрил. Использовали градиентное элюирование: от 20% В до 100%В в течение 30 мин, при 100% В в течение 5 мин, от 100% В до 20% В в течение 2 мин, при 20% В в течение 10 мин. Количественное определение L-фенилаланина в культуральной жидкости проводили на приборе “Beckman DU- 6” (США) при 540 нм, после обработки препаратов культуральной жидкости нингидрином. Масс-спектры электронного удара получены на приборе “MB-80A” (Hitachi, Япония) при энергии ионизирующих электронов 70 эВ.РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ. Получение дейтерий-меченного [2H6]- L-фенилаланина и масс-спектрометрический анализ. Как известно, большинство микроорганизмов, распространённых в природе не могут служить хорошими продуцентами аминокислот, вследствие наличия эффективных механизмов регуляции биосинтеза этих соединений в клетке, хотя эта способность проявляется у ряда их мутантных форм [17]. Активными микробными продуцентами L-фенилаланина являются, как правило, мутанты, у которых снят негативный контроль со стороны таких ключевых ферментов биосинтеза этой аминокислоты, как префенатдегидратаза и дезоксиарабиногептулозофосфатсинтетаза (рис.1) [18, 19]. Определённый интерес в связи с этим представляет исследование способности продуцировать L-фенилаланин лейцинзависимым метилотрофным мутантом B. methylicum, достаточно удобным, хотя и малоизученным объектом для биотехнологического использования. Поэтому начальный этап биохимических исследований со штаммом метилотрофных бактерий B. methylicum был связан с получением ауксотрофных мутантов, для которых в большинстве случаях характерны ограниченный спектр мутантных фенотипов и кроме того довольно высокий уровень реверсий [20]. Исходный L-лейцинзависимый штамм B. methylicum, продуцент L-фенилаланина был отобран в лаборатории генетики метилотрофов “ГосНИИ генетики и селекции промышленных микроорганизмов” на предыдущем этапе работы после обработки родительского штамма нитрозогуанидином. Скрининг нужных клонов проводили по признаку устойчивости к аналогу фенилаланина - метафторфенилаланину (50 мкг/мл). Выделенные на селективных средах аналогорезистентные мутанты конвертировали метанол и накапливали при этом фенилаланин в ферментационной среде. Сравнительные анализы (ТСХ, МС) показали, что фенилаланин, продуцируемый данным штаммом метилотрофных бактерий полностью идентичен природному L-фенилаланину. С целью увеличения эффективности изотопного мечения L-фенилаланина и интенсификации роста бактерий на полностью дейтерированной среде мы адаптировали полученный мутант B. methylicum к росту и биосинтезу в полностью дейтерированных средах. К данному штамму метилотрофных бактерий был применён специальный подход по адаптации (таблица), который заключался в серии из пяти адаптационных пассажей исходной культуры на агаризованных средах (с добавкой 2 об. % C2HO2H) при ступенчатом увеличении концентрации тяжёлой воды в них (от 0; 24,5; 49,0; 73,5 об% до 98 об% 2Н2О). При этом последовательно отбирали отдельные колонии, выросшие на средах, содержащих дейтерий. Затем их пересевали на среды с большей степенью дейтерированности, включая среду с 98 об.% 2Н2О (степень выживаемости бактерий на конечной полностью дейтерированной среде составила 40%). Таблица. Изотопный состав ростовых сред и биосинтетические характеристики B. methylicum
В качестве примера на рисунке показана фрагментация метилового эфира дансилфенилаланина при электронном ударе. В масс-спектрах этого производного, как правило, четко детектируется пик молекулярного иона метилового эфира дансилфенилаланина М+. с m/z 412. Пик аминного фрагмента А имеет невысокую интенсивность, а пик аминоацильного фрагмента В крайне низкую или вообще отсутствует (см. рис. 1). Кроме вышеобозначенных пиков, в масс-спектрах электронного удара Dns-Phe-OMe фиксируются пики с массовым числом m/z 250, 234, 170, которые соответствуют дансильному фрагменту и продуктам его распада до N-диметиламинонафталина . Масс-спектр фенилаланина, выделенный из культуральной жидкости, содержащей 98 об.% 2Н2О показан на рис. 4,б (спектр приведен относительно контрольных условий (а), где использовали обычную воду и метанол). Из рис.2,б видно, что величина пика молекулярного иона производного фенилаланина (М+. с m/z 418,0) увеличивается по сравнению с контрольными условиями (М+. с m/z 412,0) на 6 единиц, что составляет 75 % от общего количества атомов водорода в молекуле. Очевидно, что вышеобозначенные атомы дейтерия включились в молекулу фенилаланина за счет процесса биосинтеза de novo, т. е. по углеродному скелету молекулы, так как маловероятно, что они заместились в в ходе выделения аминокислоты из культуральной жидкости или при химической модификации фенилаланина (протоны (дейтероны) при гетероатомах в NH2-, и -COOH группах фенилаланина за счёт лёгкости диссоциации не учитывались). Пик с m/z 432, зафиксированный в масс-спектре культуральной жидкости (рис.4,б) вероятнее всего соответствует продукту дополнительного метилирования фенилаланина по а-NH2- группе. В масс-спектре фиксируется пик обогащённого дейтерием бензильного фрагмента с m/z 97 (вместо 91 в контроле), что указывает на то, что местами локализации атомов дейтерия в молекуле фенилаланина являются положения С1-С6 ароматических атомов и сопредельное с ними положение при углеродном атоме b. Причем, как миниум четыре из них могут быть локализованы в самом бензольном кольце молекулы фенилаланина. Полученный результат по степени дейтерированности фенилаланина важен для его использования в медицинской диагностике, где необходимо применять соединения с высокими степенями изотопного обогащения. Таким образом, в результате несложного селекционного подхода удалось получить штамм факультативных метилотрофных бактерий B. methylicum, адаптированный к высокому содержанию 2Н2О в ростовой среде. Преимуществами данного штамма для получения [2H6]-фенилаланина являются улучшенные ростовые и биосинтетические способности этого метилотрофа на максимально дейтерированной среде. За счёт использования штамма B. methylicum удалось получить около 1 грамма [2H6]-фенилаланина из 1 л культуральной жидкости (фенилаланин был также выделен из культуральной жидкости B. methylicum методом обращенно-фазовой ВЭЖХ в виде метилового эфира дансил-L-фенилаланина со степенью хроматографической чистоты 99 % и выходом 89 %). В заключение следует отметить, что более высокая эффективность мечения фенилаланина может быть обеспечена за счёт полной замены протонированных солей в составе ростовой среды на их дейтерированые аналоги, а также используя лейцин, униформно меченный дейтерием, который в принципе можно выделять из гидролизатов суммарных белков биомассы данного микроорганизма. ЛИТЕРАТУРА. 1. Patel G.B., Sprott G.D., Ekiel I. // Appl. Environ. Microbiol. - 1993. - V. 59. - N. 4. - P. 1099-1103. 2. John Colby, Howard Dalton. // Ann. Rev. Microbiol. - 1979. - V. 33. - P. 481-517. 3. Skladnev D.A., Baev M.V., Shilova S.Yu., et al. // Proceedings of 6th Europ. Conf. on Biomass for Energy. - Industry and Environment. - Athens. - 1991. - P. 47-51. 4. Katz J., and Crespi H. L. // Pure Appl. Chem. - 1972. - V. 32. - P. 221-250. 5. Crespi H. L. // Biosynthesis and uses of per-deuterated proteins. in: Synthesis and Applications of Isotopically labeled Compounds, Proceedings of the Second Inter. Symp. - Elsevier. - 1986. - P. 111-112. 6. Karnaukhova E.N., Reshetova O.S., Semenov S.Y., Skladnev D.A., Tsygankov Y.D. // Amino Acids. - 1994. - V. 6. - P. 165-176. 7. Мосин О.В., Карнаухова Е.Н., Пшеничникова А.Б.,Складнев Д.А., Акимова О.Л. // Биотехнология. - 1993. - N. 9. - С. 16-20. 8. Егорова Т.А., Мосин О.В., Еремин С.В., Карнаухова Е.Н.,Звонкова Е.Н., Швец В.И. // Биотехнология. - 1993. - N. 8. - С. 21-25. 9. Karnaukhova E.N., Mosin O.V., Reshetova O.S. // Amino Acids. - 1993. - V. 5. - P. 125. 10. Мосин О.В., Складнев Д.А., Егорова Т.А., Юркевич А.М., Швец В.И. // Биотехнология. - 1996. - N. 3. (в печати). 11. Миллер Дж. Эксперименты в молекулярной генетике. - М.: Мир, - 1976. - С. 393. 12. Звонкова Е.Н., Зотчик Н.В., Филлипович Е.И., Митрофанова Т.К., Мягкова Г.И., Серебренникова Г.А // Химия биологически активных природных соединений. - М.: Химия, 1970. - С. 65-68. 13. Bligh E.G., Dyer W.J. // Can. J. Biochem. Physiol. - 1959. - V. 37. - N. 8. - P. 911-918. 14. Егорова Т.А., Ерёмин С.В., Митснер Б.И., Звонкова Е.Н., Швец В.И. // Биотехнология. - N5. - 1993. - С. 30-35. 15. Egorova T.A., Eremin S.V., Mitsner B.I., Zvonkova E.N., Shvets V.I. // J. of Chromatography B. - 1995. - V. 665. - P. 53-62. 16. Daniely B. et al. // J. Org. mass spectrometry. - 1989. - 24. - P. 225-229. Oleg V. Mosin Department of Biotechnology, M. V. Lomonosov State Academy of Fine Chemical Technology, Vernadskogo Prospekt 86, 117571, Moscow, Russia Deuterium labelled L-phenylalanine prodused by methylotrophic bacterium Brevibacterium methylicum for biomedical diagnostics. The data on biosynthesis [2H6] - L-phenylalanine, produced by facultative methylotrophic bacteria Brevibacterium methylicum, capable to assimilate methanol (or its deuterated analogue) as a source of carbon and energy are submitted. Microbic bioconversion of deuterated methanol was carried out on the minimal growth medium containing 98 % of heavy water. The level of L-phenylalanine output has made 1 gramm from 1 liter of growth medium. The analysis of deuterium enrichment level was carried out with using a method of electron impact mass-spectrometry after preparative separation of methyl ether of N-Dns-Phenylalanine by a method of inverted - phase highly effective liquid chromatography. According to the received data, the degree of isotope inclusion of deuterium into molecule of phenylalanine has made 75 % that testifies to high efficiency of deuterium labelling of phenylalanine in these conditions. Biosynthetically received [2H6] - phenylalanine can be used for biomedical diagnostic studies. |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |