бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Генетическая инженерия. Биотехнология.

Генетическая инженерия. Биотехнология.

28

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ МЕДЕЦИНСКИЙ УНИВЕРСИТЕТ

Кафедра медицинской биологии и общей генетики

РЕФЕРАТ НА ТЕМУ:

ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ. БИОТЕХНОЛОГИЯ.

Исполнитель:

Студент 1 группы I курса

Фармацевтического факультета

Балтруконис С.А.

Руководитель:

Ассистент кафедры медицинской биологии и общей генетики

Пашинская Екатерина Сергеевна

Витебск, 2007г.

ПЛАН:

1) Генетическая инженерия - основа биотехнологии, ее цели и задачи.

2) Объекты и методы генетической инженерии.

3) Практическое использование достижений биотехнологии в фармации и медицине.

4) Будущее генной инженерии.

Предупреждение отрицательных последствий генно-инженерных манипуляций.

СОДЕРЖАНИЕ:

Номер страницы:

Введение

С. 4

Биотехнология

С. 4

Возникновение биотехнологии

С. 4

Основные направления биотехнологии

С. 5

Биоэнергетика как раздел биотехнологии

С. 5

Практические достижения биотехнологии

С. 6

Биологизация и экологизация

С. 7

Перспективы развития биотехнологии

С. 8

Генетическая инженерия

С. 9

История генетической инженерии

С. 9

Генетическая инженерия

С. 10

Цели и методы генной инженерии

С. 11

Ферменты генетической инженерии

С. 12

Достижения генетической инженерии

С. 12

Биоэтические аспекты генной инженерии

С. 15

Заключение

С. 15

Использованная литература

С. 17

Введение

В своей работе я раскрываю тему достижений генной инженерии и биотехнологии. Возможности, открываемые генетической инженерией перед человечеством как в области фундаментальной науки, так и во многих других областях, весьма велики и нередко даже революционны.

Так, она позволяет осуществлять индустриальное массовое производство нужных белков, значительно облегчает технологические процессы для получения продуктов ферментации - энзимов и аминокислот, в будущем может применяться для улучшения растений и животных, а также для лечения наследственных болезней человека.

Таким образом, генная инженерия и биотехнология, будучи одними из магистральных направлений научно-технического прогресса, активно способствуют ускорению решения многих задач, таких, как продовольственная, сельскохозяйственная, энергетическая, экологическая.

Но особенно большие возможности генная инженерия открывает перед медициной и фармацевтикой, поскольку применение генной инженерии может привести к коренным преобразованиям медицины.

Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения (раковые, сердечнососудистые, вирусные и паразитные инфекции, нервные и умственные расстройства), с помощью генной инженерии и биотехнологии станут доступны и диагностике, и лечению.

Под влиянием биотехнологии медицина может превратиться в дисциплину с ясным пониманием происходящих в организме молекулярных и генетических процессов.

Биотехнология

Возникновение биотехнологии

Биотехнология - это производственное использование биологических агентов или их систем для получения ценных продуктов и осуществления целевых превращений.

Биологические агенты в данном случае - микроорганизмы, растительные или животные клетки, клеточные компоненты (мембраны клеток, рибосомы, митохондрии, хлоропласты), а также биологические макромолекулы (ДНК, РНК, белки - чаще всего ферменты). Биотехнология использует также вирусную ДНК или РНК для переноса чужеродных генов в клетки.

Человек использовал биотехнологию многие тысячи лет: люди пекли хлеб, варили пиво, делали сыр, используя различные микроорганизмы, при этом, даже не подозревая об их существовании.

Собственно сам термин появился в нашем языке не так давно, вместо него употреблялись слова «промышленная микробиология», «техническая биохимия» и др.

Вероятно, древнейшим биотехнологическим процессом было сбраживание с помощью микроорганизмов. В пользу этого свидетельствует описание процесса приготовления пива, обнаруженное в 1981г. при раскопках Вавилона на дощечке, которая датируется примерно 6-м тысячелетием до н. э.

В 3-м тысячелетии до н. э. шумеры изготовляли до двух десятков видов пива. Не менее древними биотехнологическими процессами являются виноделие, хлебопечение, и получение молочнокислых продуктов.

В традиционном, классическом, понимании биотехнология - это наука о методах и технологиях производства различных веществ и продуктов с использованием природных биологических объектов и процессов.

Термин «новая» биотехнология в противоположность «старой» биотехнологии применяют для разделения биопроцессов, использующих методы генной инженерии и более традиционные формы биопроцессов.

Так, обычное производство спирта в процессе брожения - «старая» биотехнология, но использование в этом процессе дрожжей, улучшенных методами генной инженерии с целью увеличения выхода спирта - «новая» биотехнология.

Биотехнология как наука является важнейшим разделом современной биологии, которая, как и физика, стала в конце XX в. одним из ведущих приоритетов в мировой науке и экономике.

Всплеск исследований по биотехнологии в мировой науке произошел в 80-х годах, но, несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание, как ученых, так и широкой общественности.

По прогнозам, уже в начале 21 века биотехнологические товары будут составлять четверть всей мировой продукции.

Что касается более современных биотехнологических процессов, то они основаны на методах рекомбинантных ДНК, а также на использовании иммобилизованных ферментов, клеток или клеточных органелл.

Современная биотехнология - это наука о генно-инженерных и клеточных методах создания и использования генетически трансформированных биологических объектов для улучшения производства или получения новых видов продуктов различного назначения.

Основные направления биотехнологии

Условно можно выделить следующие основные направления биотехнологии:

· биотехнология пищевых продуктов;

· биотехнология препаратов для сельского хозяйства;

· биотехнология препаратов и продуктов для промышленного и бытового использования;

· биотехнология лекарственных препаратов;

· биотехнология средств диагностики и реактивов.

Биотехнология также включает выщелачивание и концентрирование металлов, защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Биоэнергетика как раздел биотехнологии

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых.

Леса составляют около 68% биомассы суши, травяные экосистемы - примерно 16%, а возделываемые земли - только 8%.

Для сухого вещества простейший способ превращения в энергию заключается в сгорании - оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию.

Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана).

Метановое «брожение», или биометаногенез, - давно известный процесс превращения биомассы в энергию. Он был открыт в 1776г. Вольтой, который установил наличие метана в болотном газе.

Отходы пищевой промышленности и сельскохозяйственного производства характеризуются высоким содержанием углерода (в случае перегонки свеклы на 1л отходов приходится до 50г углерода), поэтому они лучше всего подходят для метанового «брожения», тем более что некоторые из них получаются при температуре, наиболее благоприятной для этого процесса.

Конференция ООН по науке и технике для развивающихся стран (1979г.) и эксперты Экономической и социальной комиссии по странам Азии и Тихого океана подчеркнули достоинства сельскохозяйственных программ, использующих биогаз.

Надо отметить, что 38% от 95-миллионного поголовья крупного рогатого скота в мире, 72% остатков сахарного тростника и 95% отходов бананов, кофе и цитрусовых приходятся на долю стран Африки, Латинской Америки, Азии и Ближнего Востока.

Не удивительно, что в этих регионах сосредоточены огромные количества сырья для метанового «брожения».

Следствием этого явилась ориентация некоторых стран сельскохозяйственно ориентированной экономикой на биоэнергетику.

Производство биогаза путем метанового «брожения» отходов - одно из возможных решений энергетической проблемы в большинстве сельских районов развивающихся стран.

Биотехнология в состоянии внести крупный вклад в решение проблем энергетики также посредством производства достаточно дешевого биосинтетического этанола, который, кроме того, является и важным сырьем для микробиологической промышленности при получении пищевых и кормовых белков, а также белково-липидных кормовых препаратов.

Практические достижения биотехнологии

С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности.

Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов.

Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т.д.

Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений - атропин, никотин, алкалоиды, сапонины и др.

В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных.

В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение.

Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Биологизация и экологизация

В настоящее время все больше приобретают популярность идеи экологизации и в более широком смысле биологизации всей хозяйственной и производственной деятельности.

Под экологизацией, как начальным этапом биологизации, можно понимать сокращение вредных выбросов производства в окружающую среду, создание малоотходных и безотходных промышленных комплексов с замк-нутым циклом и т. п.

Биологизацию же следует понимать более широко, как радикальное преобразование производственной деятельности на основе биологических законов биотического круговорота биосферы.

Целью подобного преобразования должно быть встраивание всей хозяйственно-производственной деятельности в биотиче-ский круговорот.

Особенно наглядно эта необходимость видна на феномене стратегической беспомощности химической защиты растений:

Дело в том, что в настоящее время нет в мире ни одного пестицида, к которому бы не приспособились вредители растений.

Более того, теперь отчетливо выявилась закономерность подобного приспособления: если в 1917г. появился один вид насекомых, приспособившихся к ДДТ, то в 1980г. таких видов стало 432.

Применяемые пестициды и гербициды крайне вредны не только для всего животного мира, но и для человека.

Точно так же в настоящее время становится понятной и стратегическая бесперспективность приме-нения химических удобрений. В этих условиях совершенно естествен переход к биологической защите растений и биоорганической технологии с минимумом химических удобрений.

Решавшую роль в процессе биологизации сельского хозяйства может сыграть биотехнология.

Можно и нужно говорить о биологизации техники, промышленного производства и энергетики.

Активно развивающаяся биоэнергетика обещает революционные преобразования, поскольку она ориентирована на возобновляемые источники энергии и сырья.

Перспективы развития биотехнологии

Центральная проблема биотехнологии - интенсификация биопроцессов как за счет повышения потенциала биологических агентов и их систем, так и за счет усовершенствования оборудования, применения биокатализаторов (иммобилизованных ферментов и клеток) в промышленности, аналитической химии, медицине.

В основе промышленного использования достижений биологии лежит техника создания рекомбинантных молекул ДНК.

Конструирование нужных генов позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми свойствами.

В частности, возможно управление процессом фиксации атмосферного азота и перенос соответствующих генов из клеток микроорганизмов в геном растительной клетки.

В качестве источников сырья для биотехнологии все большее значение будут приобретать воспроизводимые ресурсы не пищевых растительных материалов, отходов сельского хозяйства, которые служат дополнительным источником как кормовых веществ, так и вторичного топлива (биогаза) и органических удобрений.

Одной из бурно развивающихся отраслей биотехнологии считается технология микробного синтеза ценных для человека веществ. По прогнозам, дальнейшее развитие этой отрасли повлечет за собой перераспределение ролей в формировании продовольственной базы человечества растениеводства и животноводства с одной стороны, и микробного синтеза - с другой.

Не менее важным аспектом современной микробиологической технологии является изучения участия микроорганизмов в биосферных процессах и направленная регуляция их жизнедеятельности с целью решения проблемы охраны окружающей среды от техногенных, сельскохозяйственных и бытовых загрязнений.

С этой проблемой тесно связаны исследования по выявлению роли микроорганизмов в плодородии почв (гумусообразовании и пополнении запасов биологического азота), борьбе с вредителями и болезнями сельскохозяйственных культур, утилизации пестицидов и других химических соединений в почве.

Имеющиеся в этой области знания свидетельствуют о том, что изменение стратегии хозяйственной деятельности человека от химизации к биологизации земледелия оправдывается как с экономической, так и с экологической точек зрения.

В данном направлении перед биотехнологией может быть поставлена цель регенерации ландшафтов.

Ведутся работы по созданию биополимеров, которые будут способны заменить современные пластмассы. Эти биополимеры имеют существенное преимущество перед традиционными материалами, так как нетоксичны и подвержены биодеградации, то есть легко разлагаются после их использования, не загрязняя окружающую среду.

Биотехнологии, основанные на достижениях микробиологии, наиболее экономически эффективны при комплексном их применении и создании безотходных производств, не нарушающих экологического равновесия.

Их развитие позволит заменить многие огромные заводы химической промышленности экологически чистыми компактными производствами.

Важным и перспективным направлением биотехнологии является разработка способов получения экологически чистой энергии.

Получение биогаза и этанола были рассмотрены выше, но есть и принципиально новые экспериментальные подходы в этом направлении.

Одним из них является получение фотоводорода:

«Если из хлоропластов выделить мембраны, содержащие фотосистему 2, то на свету происходит фотолиз воды - разложение ее на кислород и водород. Моделирование процессов фотосинтеза, происходящих в хлоропластах, позволило бы запасать энергию Солнца в ценном топливе - водороде».

Преимущества такого способа получения энергии очевидны:

· наличие избытка субстрата, воды;

· нелимитируемый источник энергии - Солнце;

· продукт (водород) можно хранить, не загрязняя атмосферу;

· водород имеет высокую теплотворную способность (29 ккал/г) по сравнению с углеводородами (3.5 ккал/г);

· процесс идет при нормальной температуре без образования токсических промежуточных продуктов;

· процесс циклический, так как при потреблении водорода регенерируется субстрат - вода.

Генетическая инженерия

История генетической инженерии

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики.

На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу.

Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК.

С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50-60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально.

Шло интенсивное развитие молекулярной генетики, объектами которой стали кишечная палочка (E. Coli), ее вирусы и плазмиды.

Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов.

ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов.

В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно условно разделить на три этапа:

Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-реципиента) генов эукариот, главным образом, животных.

Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг и С. Коэн с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.

Генетическая инженерия

Одним из разделов молекулярной генетики и молекулярной биологии, который нашел наибольшее практическое приложение, является генная инженерия.

Генная инженерия - это сумма методов, позволяющих переносить гены из одного организма в другой, или - это технология направленного конструирования новых биологических объектов.

Родившись в начале 70-х годов, она добилась сегодня больших успехов. Методы генной инженерии преобразуют клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка.

Это дает возможность детально анализировать структуру и функции белков и использовать их в качестве лекарственных средств.

В настоящее время кишечная палочка (E. coli) стала поставщиком таких важных гормонов как инсулин и соматотропин.

Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока. Для получения 100г кристаллического инсулина требуется 800-1000кг поджелудочной железы, а одна железа коровы весит 200-250грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков.

Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот. При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин.

Было показано, что он не содержит белков E. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается.

Соматотропин - гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на 1 кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см.

Ранее его получали из трупного материала, из одного трупа: 4 - 6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы.

Компания "Genentec" в 1980 году разработала технологию производства соматотропина с помощью бактерий, который был лишен перечисленных недостатков. В 1982 году гормон роста человека был получен в культуре E. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР.

Цели и методы генетической инженерии

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название «обратная генетика». При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку. Таким способом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенное яйцеклетку, могут быть получены трансгенные организмы, передающие мутантный ген потомками.

Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.

Технология рекомбинантных ДНК использует следующие методы:

· специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

· быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

· конструирование рекомбинантной ДНК;

· гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью;

· клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

· введение рекомбинантной ДНК в клетки или организмы.

Ферменты генетической инженерии

Генетическая инженерия - потомок молекулярной генетики, но своим рождением обязана успехам генетической энзимологии и химии нуклеиновых кислот, так как инструментами молекулярного манипулирования являются ферменты.

Если с клетками и клеточными органеллами мы подчас можем работать микроманипуляторами, то никакие, даже самые мелкие микрохирургические инструменты не помогут при работе с макромолекулами ДНК и РНК.

Только ферменты могут найти определенные последовательности нуклеотидов, «разрезать» там молекулу или, наоборот, «заштопать» дырку в цепи ДНК.

Эти ферменты издавна находятся в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки.

Задача генного инженера - подобрать фермент, который выполнил бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.

Следует отметить, что ферменты, применяемые в генной инженерии, лишены видовой специфичности, поэтому экспериментатор может сочетать в единое целое фрагменты ДНК любого происхождения в избранной им последовательности.

Это позволяет генной инженерии преодолевать установленные природой видовые барьеры и осуществлять межвидовое скрещивание.

Ферменты, применяемые при конструировании рекомбинантных ДНК, можно разделить на несколько групп:

· ферменты, с помощью которых получают фрагменты ДНК (рестриктазы);

· ферменты, синтезирующие ДНК на матрице ДНК (полимеразы) или РНК (обратные транскриптазы);

· ферменты, соединяющие фрагменты ДНК (лигазы);

· ферменты, позволяющие осуществить изменение структуры концов фрагментов ДНК.

Достижения генетической инженерии

С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками.

Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией.

Генная инженерия открыла путь для производства продуктов белковой природы путем введения в клетки микроорганизмов, искусственно синтезированных генов, где они могут экспрессироваться (встраиваться) в состав гибридных молекул.

Первой удачной попыткой такого рода стала работа К. Итакуры и Г. Бойера с соавторами (1977г.) по экспрессии в Е. coil химически синтезированного гена, кодирующего гормон млекопитающих - соматостатин.

Ген соматостатина был получен на основе сведений о первичном строении этого пептидного гормона, состоящего всего из 14 аминокислот. Использованный в этой работе подход оказался весьма перспективным для получения и многих других пептидных гормонов.

В различных лабораториях в СССР и за рубежом были созданы штаммы Е. coli, синтезирующие в составе гибридных белков гормон роста человека (соматотропин), пептидные гормоны -- брадикинин и ангиотензин, нейропептид лей-энкефалин и др.

Ген гормона роста человека длиной 584 п.н.-- наиболее длинный из искусственно синтезированных в настоящее время. Он был встроен в плазмиду, реплицирующуюся в Е. coli под контролем промотора триптофанового оперона.

Трансформированные полученной химерной плазмидой клетки Е. coli продуци-ровали при индукции промотора около 3 млн. молекул гормона роста человека в расчете на клетку. Этот полипептид, как было установлено в экспериментах на крысах с удаленным гипофизом, по функциям оказался полностью идентичен гормону роста человека.

В 1976г. Гилберт и Максам в Гарвардском университете, а также Сэнгер разработали быстрый метод химического анализа ДНК. Появилась реальная возможность опреде-лять последовательность до 1000 нуклеотидов в неделю силами одного исследователя.

В 1982-1985гг. стало возможно создать прибор для автоматического анализа нуклеиновых кислот (а значит и генов).

Еще один важнейший этап - это синтез биополимеров по установленной структуре. Первые коммерческие приборы, производящие автоматизированный синтез полипептидов, были разработаны на основе исследований Меррифилда в 1963г. Они используются в исследовательских лаборато-риях и в фармацевтической промышленности.

Метод химического синтеза генов обеспечил также возможность получения штаммов бактерий продуцентов инсулина человека, важного лечебного препарата для больных диабетом.

«Ген инсулина синтезировали в виде более сорока в основном шестичленных олигонуклеотидов, которые затем объединяли в единую структуру с помощью ДНК-лигазы. Полученные двухцепочечные полинуклеотиды длиной 271 и 286 пар оснований были встроены в плазмидные векторы. Туда же были встроены и регуляторные участки ДНК, обеспечивающие экспрессию гибридных молекул. Клонированные гены кодировали синтез проинсулина, который путем несложной химической обработки можно превратить в активный инсулин, включающий две полипептидные цепи А и В из 21 и 30 аминокислотных остатков, соединенных между собой сульфгидрильными связями».

Таким способом получены и клонированы гены, кодирующие глобины человека, животных и птиц, белок хрусталика глаза быка, яичный белок, фиброин шелка, продуцируемый тутовым шелкопрядом, и др.

Этот же принцип был применен для получения, клонирования и экспрессии генов интерферона человека в бактериях. Интерферон - ценный лекарственный препарат, широко используемый для борьбы с вирусными инфекциями и лечения ряда других заболеваний, включая злокачественные опухоли. Интерферон вырабатывается в клетках животных и человека, но обладает выраженной видовой специфичностью.

Ю. А. Овчинников и В. Г. Дебабов с сотрудниками по-лучили микроорганизмы, эффективно синтезирующие интерфероны человека. Этим исследователям удалось сконструировать рекомбинантные плазмиды, обуславливающие синтез интерферона человека в Е. coli.

Очищенный из клеток бактерий интерферон по своим физико-химическим и биологическим свойствам оказался близок интерферону, находящемуся в крови доноров.

За счет введения в векторную плазмиду сигнальных последовательностей, инициирующих синтез и РНК и белка, удалось получить бактерии, способные синтезировать до 5 мг интерферона в расчете на 1л суспензии бактерий. Это в 5000 раз больше, чем содержится в 1л крови доноров. Замена Е. coli на микробы некоторых других видов позволяет еще больше увеличить производительность такой «фабрики интерферона».

К открытиям связанным с достижениями генной инженерии нужно прибавить то, что огромный генетический «чертеж» многоклеточного существа просчитан полностью.

После восьми лет работы многих исследовательских групп удалось точно определить 97 миллионов пар нуклеотидов и их местонахождение в спирали ДНК, хранящей полную наследственную информацию микроскопического червячка Сaenorhabditis elegans длиной около миллиметра.

Хотя это очень маленький червь, скорее червячок, с него без всякого преувеличения начинается новая эра в биологии. Геном этой нематоды состоит из 97 миллионов пар нуклеотидов ДНК, округленно 0,1 миллиарда пар. Геном человека, согласно большинству оценок, - 3 миллиарда нуклеотидных пар. Разница в 30 раз. Однако именно эта работа, о которой идет речь, окончательно убедила даже самых закоренелых скептиков, что расшифровка строения всего генома человека не только возможна, но и достижима в ближайшие годы.

Естественно, расшифровать геном таких гигантских размеров, как у названной нематоды (97 миллионов пар нуклеотидов ДНК), невозможно без огромной подготовительной работы. Ее в основном завершили к 1989 году. Прежде всего, была построена физическая карта всего генома нематоды. Физическая карта представляет собой небольшие участки ДНК известной структуры (маркеры), расположенные на определенных расстояниях один от другого.

И вот с 1990 года началось само секвенирование. Его темп составлял в 1992 году 1 миллион пар нуклеотидов в год. Если бы такой темп сохранился, на расшифровку всего генома понадобилось бы почти 100 лет! Ускорить работы удалось простейшим способом - число исследователей в каждом центре возросло примерно до 100. По мере того, как раскрывалась нуклеотидная последовательность ДНК C. elegans, пришлось расстаться с двумя заблуждениями:

Во-первых, оказалось, что генов у нее не 15 тысяч, как предполагали вначале, а 19099.

Во-вторых, надежда на то, что гены сосредоточены в середине хромосом, а к концам сильно редеют, оправдалась лишь отчасти: гены распределены вдоль хромосом относительно равномерно, хотя в центральной части их все-таки больше.

В лабораториях мира полным ходом идет расшифровка генома человека. Эта международная программа была начата в 1989 году.

Сейчас в разных странах мира, в лабораториях, разделивших между собой «фронт работ» (всего надо прочитать около трех миллиардов пар нуклеотидов), ежедневно расшифровывается более миллиона нуклеотидных пар, причем темп работ все ускоряется.

Если у дрожжей функция половины генов в геноме неизвестна (так называемые молчащие гены), то у червя C. elegans эта доля еще больше: из 19 тысяч генов 12 тысяч остаются пока загадочными.

Значение секвенирования генома нематоды, конечно, выходит далеко за рамки того, что можно назвать полигоном для расшифровки генома человека. C. elegans - первый многоклеточный организм, геном которого раскрыт практически полностью.

Можно напомнить: несколько лет назад был расшифрован первый геном эукариотического организма - дрожжей, то есть организма, клетки которого содержат оформленные ядра.

Иначе говоря, за два года был пройден путь от генома одноклеточного до генома многоклеточного организма.

Программа «Геном человека», как уже говорилось, - программа общечеловеческая. Каждая лаборатория, в какой бы стране она ни находилась, вносит в нее посильный вклад. И как только кому-то удается раскрыть структуру нового гена, эта информация немедленно поступает в Международный банк данных, доступный каждому исследователю.

Сейчас, даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

Биоэтические аспекты генной инженерии

В соответствии с рекомендациями Европейского комитета по генной инженерии (1984г.) все исследования, проводимые по рекомбинации ДНК должны быть в обязательном порядке доведены до сведения экспертной комиссии по генной инженерии тех стран, на территории которых они проводятся.

Это необходимо для того, чтобы любую работу, грозящую опасностью человеку или среде обитания, можно было вовремя остановить или изменить.

Большинство работ, связанных с клонированием человеческого материала, по мнению большинства экспертов, должно быть запрещено, как и работы по выращиванию химер и гибридов с помощью комбинаций генетического материала, полученного от человека и животных.

Такие работы должны расцениваться как преступление.

Пересадка генов с терапевтической целью допустима только для соматических клеток. Генная пересадка зародышевых клеток для иных целей, кроме терапевтических, должна быть, безусловно, запрещена.

Применение половых клеток для генного лечения будет возможно только после получения достоверных доказательств преимущества и безопасности такого лечения по сравнению с генной терапией соматических клеток.

Заключение

В заключение хочу сказать, что широкое использование микроорганизмов не может не порождать новых взаимоотношений с живой природой, что вполне естественно ведет к желанию осмыслить сами эти взаимоотношения и соотнести их со сложившимися представлениями, с одной стороны, о роли живой природы в жизнедеятельности человека, а с другой - о роли человека в биотическом круговороте биосферы.

Имеющийся пока не слишком богатый опыт развития биотехнологии все-таки содержит в себе много непривычного и вместе с тем многообещающего для возможной оптимизации человеческой жизнедеятельности.

А остро вставшая перед Homo sapiens проблема самосохранения вынуждает его к лихорадочным поискам возможных вариантов стратегии своей жизнедеятельности. Этому привлечению природы, причем именно мира микроорганизмов, и положила начало новая биотехнология.

Можно, видимо, сказать, что биотехнология в совокупности с другими научными направлениями открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.

«Явившись прямым результатом научных разработок, биотехнология оказывается непосредственным единением науки и производства, еще одной ступенькой к единству познания и действования, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности».

И все-таки она является только небольшим шагом. Поскольку, как заметил Б. Шоу, наука всегда ошибается. Она никогда не разрешает какой-то проблемы, не создав еще десять новых.

Биотехнология сама оказывается всего лишь крупной индустрией, соединением технических и биологических элементов и, естественно, наследует отрицательные свойства уже существующего индустриально-промышленного комплекса.

Их действительное преодоление и решение проблемы человека предполагают выход человечества на новые, более совершенные ступени социально-культурного развития, основанного на новых способах познания и действования.

Поэтому весьма существенное значение приобретает проблема выбора стратегии взаимодействия человека и природы: или это самонадеянное управление природой или же сознательное и целенаправленное приспособление всей жизнедеятельной деятельности, к существующему биотическому круговороту биосферы.

В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК, гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее.

Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.

На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.

Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:

1) Бекиш О.-Я.Л. Медицинская биология. - Мн.: Ураджай, 2000. - с.114-119.

2) Мутовин Г.Р. Основы клинической генетики. - М.: Высшая школа, 1997. - с. 83-84.

3) Заяц Р.С. Основы медицинской генетики. - Мн.: Высшая школа, 1998. - с. 60-65.

4) biotechnolog.ru


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.