|
Генетикаp align="left"> Принципиальная особенность генной - способность создавать структуры ДНК, которые никогда не образуются в живой природе. Генная инженерия преодолела барьер, существующий в живом мире, где генетический обмен осуществляется только в пределах одного вида или близкородственных видов организмов. Она позволяет переносить гены из одного живого организма в любой другой. Эта новая техника открыла безграничные перспективы создания микроорганизмов, растений и животных с новыми полезными свойствами.Конечно, нарушение барьеров живой природы может таить потенциальную опасность. Вот почему во всех развитых странах мира правила работы, законы, регулирующие генно-инженерную деятельность. Закон о "генно-инженерной деятельности" принят и парламентом РФ в июле 1996 г.Невозможно рассказать о всех аспектах применения техники генной инженерии в биотехнологии или научных исследованиях. Приведём лишь несколько примеров, иллюстрирующих возможности этого метода. Одно из наиболее важных направлений генной инженерии - производство лекарств нового поколения, представляющих собой биологически активные белки человека. Следует напомнить, что в большинстве случаев белки человека (как и других животных) видоспецифичны, т.е. для лечения человека можно использовать только белки человека. Вследствие этого возникает проблема получения человеческих белков в нужных количествах. В связи со сказанным интересна история получения интерферонов. В 1957 г. английские ученые Иссаакс и Линдельман обнаружили, что мыши, болевшие гриппом, не подвержены инфекции другими, более опасными вирусами. Исследование наблюдаемого явления привело к выводу, клетки животных и человека в ответ на вирусную инфекцию выделяют какое-то вещество, которое делает окружающие здоровые клетки устойчивыми к вирусной инфекции. Это вещество (или вещества) получило название интерферона. В течение последующих 20 лет велись интенсивные исследования. Было установлено, что интерфероны - группы белков, относящиеся к 3 классам - alpha, betta и gamma. Лейкоциты крови выделяют интерферон типа alpha , фибробласты типа betta и T- лейкоциты типа gamma. Интерфероны выделили, очистили и показали их эффект как противовирусных лекарств. Кроме того, эти белки оказались эффективными при лечении рассеянного склероза и некоторых видов рака. Единственным препятствием к использованию интерферонов была их малая доступность. Они синтезировались в очень малых количествах: источником их получения была или донорская кровь, или культура клеток человека. К сожалению, эти источники не позволяли получать интерфероны в количестве, нужных медицине. В 1980 - 1985 гг. в нескольких лабораториях мира, в том числе и в СССР, были выделены гены человека, определяющие синтез интерферонов, и введены в бактерии. Такие бактерии стали способны синтезировать человеческий интерферон. Очень важно, что они быстро растут, используют дешёвую питательную среду и синтезируют большое количество белка. Из 1 л бактериальной культуры можно выделить столько человеческого интерферона alpha, сколько из 10 тыс. л. донорской крови. Полученный белок абсолютно идентичен интерферону, синтезируемому в организме человека. Конечно, пришлось решать сложную задачу очистки интерферона, полученного способом генной инженерии, до гомогенного состояния. Ещё 4 - 6 лет заняли доклинические и клинические испытания. Наконец в 1989 -1990 гг. появилось новое лекарство - человеческий интерферон alpha; в России он выпускается под названием "реаферон". За эту работу группа ученых удостоена Ленинской премии. Сегодня это почти единственный препарат, который эффективен против вирусных гепатитов как в острой, так и в хронических формах, против герпеса, простудных заболеваний. Интерферон применяется и в терапии некоторых видов рака. За рубежом с 1994 г. выпускаются препараты betta и gamma - интерферонов человека. Из других препаратов рекомбинантных белков человека, получивших широкое медицинское применение, следует назвать инсулин, гормон роста, эритропоэтин. Свиной инсулин отличается от человеческого всего одной аминокислотой. Применяется с 1926 г. для лечения людей при инсулинзависимом сахарном диабете. Для гормона роста и эритропоэтина отмечается, как и для интерферонов, видоспецифичность белков. Генная инженерия открыла новую возможность использования этих белков в медицине. Гормон роста применяется не только для борьбы с карликовостью, но и широко используется как стимулятор для заживления ран, сращивания костей. Гормоны роста животных начали использовать в с/х (увеличение на 15% удоя коров, ускорение роста рыб). Эритропоэтин - стимулятор кроветворения и используется при лечении различного рода анемий. В настоящее время в мире получили разрешение на применение более 30 препаратов, созданных методами генной инженерии, и более 200 находятся на разных стадиях клинических исследований. Сейчас более 20% фармацевтического рынка лекарств составляют лекарства новой биотехнологии. Использование рекомбинантных белков человека - принципиально новая терапия. В не вводится ничего чужого. Действительно, если в нём не хватает инсулина или гормона роста, их добавляют (заместительная терапия). С вирусами организм сам борется с помощью интерферонов - человек просто помогает ему. Значительные успехи достигнуты в генной инженерии растений. В основе этой техники лежат методы культивирования клеток и тканей растений в пробирке и возможность регенерации целого растения из отдельных клеток. В генной инженерии растений есть свои проблемы. Одна из них состоит в том, что многие полезные свойства растений кодируются не одним, а многими генами. Это делает трудным или невозможным прямое генно-инженерное совершенствование свойств. Другое препятствие, которое постепенно преодолевается, - трудности культивирования и регенерации клеток в целое растение среди некоторых видов, например злаков. Лучшие результаты получены в том случае, когда перенос одного гена может привести к появлению у растения полезного свойства. Несмотря на ограничения, получены впечатляющие результаты: созданы сорта хлопчатника, томатов, табака, риса, устойчивых к насекомым-вредителям, вирусам, грибковым заболеваниям. Пионер в области применения генно-инженерных растений в с/х - США. Здесь в 1996 году до 20% посевов хлопчатника произведено семенами, модифицированными методом генной инженерии. Создание генно-инженерных (их сейчас называют трансгенными) животных имеет те же принципиальные трудности, что и создание трансгенных растений, а именно: множественность генов, определяющих хозяйственно ценные признаки. Тем не менее, есть быстро развивающаяся область, связанная с созданием трансгенных животных - продуцентов биологически активных белков. В высших организмах конкретные гены кодируют производство белков в определенных тканях. Хотя все гены содержатся в каждой клетке, в специализированных клетках работают только некоторые из них, этим и определяется тканевая специфичность. Примером может служить производство белков молока (козеин, лактальбумин) в молочных железах. Есть возможность подставить нужный нам ген под регуляторные последовательности, например казеина, и получить чужеродный белок в составе молока. Важно при этом, что животное чувствует себя нормально, так как чужой ген работает только в процессе лактации. В мире уже существуют сотни трансгенных овец и коз, продуцирующих в молоке от десятков миллиграмм до нескольких грамм биологически активных белков человека в 1л молока. Такой метод производства экономически выгоден и экологически чище, хотя и требует от ученых больших усилий и времени при создании трансгенных животных по сравнению с созданием генно-инженерных микроорганизмов. С молоком трансгенных животных можно получать не только лекарства. Известно, что для производства сыра высокого качества необходим фермент, створаживающий молоко, - реннин. Этот фермент добывают из желудков молочных телят. Он дорог и не всегда доступен. Наконец, генные инженеры сконструировали дрожжи, которые стали производить этот ценный белок при микробиологическом синтезе. Следующий этап генной инженерии - создание трансгенных овец, которые синтезируют химозин в молоке. Небольшое стадо наших овец в России находится на Ленинских Горках под Москвой. Эти овцы синтезируют до 300 мг/л фермента в молоке. Для процесса сыроварения белок можно не выделять, а использовать просто в составе молока. Возможна экспансия биотехнологии в области, которые сегодня целиком принадлежат химии. Это - биокатализ (вместо химического катализа) и новые материалы. Один из процессов биокатализа, успешно реализованного в промышленности, - получение акриламида из акрилонитрила. CH2=CH-CN -> CH2=CH-C=0 | NH2 Акриламид служит исходным мономером для получения полимеров и сополимеров, широко используемых при очистке воды и стоков, в горном деле, при осветлении соков и вин, приготовлении красок и т.п. До недавнего времени процесс гидролиза нитрила вели при 105 С в присутствии серной кислоты. После окончания процесса серную кислоту нейтрализовали аммиаком. Большое количество сернокислого аммония, в конечном счёте оказывался в реках. Были велики затраты энергии, быстро изнашивалось оборудование, и качество акриламида оставляло желать лучшего. В 1987 году ученые из института генетики и селекции промышленных микроорганизмов совместно со своими коллегами из Саратовского филиала института приступили к поиску в природе микроорганизмов, которые могли бы превращать акрилонитрил в акриламид, Такие микроорганизмы были найдены. После ряда манипуляций получены микроорганизмы, синтезирующие в 10 тыс. раз больше фермента - нитрилгидратазы, ответственного за трансформацию акрилонитрила. Достижения учёных реализованы на практике. На одном из заводов, выпускающий антибиотики, налажен выпуск биокатализатора, т.е. нужных микроорганизмов, а ещё на 3 заводах осуществлён процесс биокаталитического получения акриламида. Процесс осуществляется при комнатном давлении и температуре, следовательно, мало энергоёмок. Процесс практически не имеет отходов, экологически чист. Получаемый новым методом акриламид имеет высокую чистоту, что важно, так как большая его часть далее полимеризуется в полиакриламид, а качество полимера сильно зависит от чистоты мономера. Другой пример относится не к биокатализу, а к биоматериалам. Учёные давно обратили внимание на очень ценные механические свойства материала, из которого пауки плетут сети. Паутинка примерно в 100 раз тоньше человеческого волоса, этот материал мягче хлопка, прочнее стали, обладает уникальной эластичностью, практически не меняет свойств при изменении температуры, материал идеально подходит для многих практических целей: парашютного корда, бронежилетов и т.д. Вопрос, где взять большое количество паутины по сходной цене? На помощь пришла генная инженерия. Учёные выделили гены, ответственные за синтез белков паутины, и перенесли их в микроорганизмы. В 1995 г. появилось сообщение американских исследователей, что в микроорганизмах действительно синтезируется нужный белок. Таким образом открывается путь к промышленному микробиологическому синтезу нового материала. Обычно для роста микроорганизмов используются дешёвые крахмал, патока и другие с/х продукты, т.е. возобновляемое сырьё. Нужно отметить. Что бактерии синтезируют не нити, а аморфный белок так же, как и пауки. Нить образуется, когда паук выдавливает белок из сопла своих желёз. Технически возможно имитировать этот процесс, продавливая аморфный белок через очень тонкие отверстия. Первые нити из микробиологического белка уже получены. Есть реальная возможность улучшить великолепные качества паутины, внеся некоторые изменения в аминокислотную последовательность белка. Приведённые примеры далеко не охватывают всех практических аспектов применения генной инженерии. Мы не касались вопросов энергетики, охраны среды, добычи полезных ископаемых, микробиологической промышленности, а также очень важного вопроса - роли генной инженерии в развитии самой молекулярной биологии. Новая «Зелёная революция», которая уже началась, даст растения, которые не будут нуждаться в пестицидах, а в будущем - и в азотных удобрениях. Прекращение использования Химических пестицидов резко улучшит состояние окружающей среды, сократит расходы нефти и газа на их производство (на 3%). Появятся новые материалы новые лекарства, высокопроизводительные животные, новые пищевые продукты. По заключению экспертов конгресса США, «биотехнология в наибольшей степени изменит образ жизни людей в XXI веке». 2.2. Генная инженерия На сегодняшний день существует несколько сотен генетически изменённых продуктов. Уже на протяжении нескольких лет их употребляют миллионы людей в большинстве стран мира. Есть данные, что подобными технологиями пользуются для получения продуктов, реализуемых через сеть McDonalds. Многие крупные концерны, типа Unilever, Nestle, Danon и другие используют для производства своих товаров генно-инженерные продукты и экспортируют их во многие страны мира. Но во многих странах такие продукты обязательно должны содержать на упаковке надпись "Сделано из генетически модифицированного продукта". Некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора. Пример. Какое-либо растение выбросило несколько тысяч семян, и они проросли. Среди тысяч появившихся ростков некоторые обязательно будут отличаться от родителя, то есть фактически окажутся мутантами. Если изменения вредны для растения, то оно погибнет, а если полезны, то оно даст более приспособленное и совершенное потомство, и так может образоваться новый вид растения. Но если природе для образования новых видов требуется много сто- или тысячелетий, то учёные производят этот процесс за несколько лет. Какой-то принципиальной же разницы нет. Самые распространенные - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, кабачки. Эксперименты проводятся на подсолнечнике, сахарной свекле, табаке, винограде, деревьях и т. д. В тех странах, где пока нет разрешения на выращивание трансгенов, проводятся полевые испытания. Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые или толерантные (терпимые) к гербицидам, выживают. Чаще всего компания, продающая семена подобных растений, предлагает в наборе и соответствующие гербициды. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина - земляной бактерии Bacillus thuringiensis. Устойчивость к вирусу растение приобретает благодаря встроенному гену, взятому из этого же самого вируса. Основная масса трансгенов культивируется в США, в Канаде, Аргентине, Китае, меньше - в других странах. Европа же очень озабочена. Под натиском общественности и организаций потребителей, которые хотят знать, что они едят, в некоторых странах введен мораторий на ввоз таких продуктов (Австрия, Франция, Греция, Великобритания, Люксембург). В других принято жесткое требование маркировать генетически измененное продовольствие. Австрия и Люксембург запретили производство генных мутантов, а греческие фермеры под черными знаменами и с плакатами в руках ворвались на поля в Беотии, в Центральной Греции, и уничтожили плантации, на которых британская фирма "Зенека" экспериментировала с помидорами. 1300 английских школ исключили из своих меню пищу, содержащую трансгенные растения, а Франция очень неохотно и медленно дает одобрение на продажу любых новых продуктов с чужими генами. В ЕС разрешены только три вида генетически измененных растений, а если точнее - три сорта кукурузы. Соя - пока единственная трансгенная культура, разрешенная к применению в России. На подходе - трансгенный картофель, кукуруза и сахарная свекла. Если в 1996 году в мире под трансгенными культурами было занято 1,8 миллионов гектаров, то в 1999 году уже почти 40 миллионов. А в 2001 году, по прогнозам, будет не менее 60 миллионов. Это не считая Китая, который не дает официальной информации, но, по оценкам, около миллиона китайских фермеров выращивают трансгенный хлопок примерно на 35 млн. гектаров. Первым искусственно изменённым продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым. Американские компании Origen Therapeutics и Embrex планируют наладить массовое производство клонированных цыплят. Смысл всей затеи очевиден: тиражирование одной единственной жирной птички, которая мало ест, быстро растет и не болеет, представляется делом необыкновенно выгодным. Исследования, которые проводятся при поддержке Национального института науки и технологий, выделившего на проект 4,7 миллиона долларов, уже дали конкретные результаты. Технология клонирования в своем обычном виде, предполагающая перенос ядра клетки-донора в яйцеклетку с последующей ее имплантацией суррогатной матери, к птицам неприменима, поскольку, как известно, их эмбрионы развиваются не в матке, а в скорлупе. Генетические копии цыплят создаются иным образом. Ученые выделяют и размножают эмбриональные стволовые клетки донора, из которых с ростом эмбриона развиваются все ткани. Затем эти клетки имплантируются в обычное яйцо. Строго говоря, получающийся таким образом цыпленок является не генетической копией, а "химерой", поскольку вместе с донорскими клетками содержит и родные, те, что были в яйце. Однако ученые добились, чтобы донорских клеток было более 95 %, и даже создали 100-процентного клона. Для массового производства таких цыплят планируется использовать специальные машины, способные за час ввести инъекции в 50 тысяч яиц. Американцы добились изменения клубники, тюльпанов. Вывели сорт картофеля, который при жарке впитывает меньше жира. Они же скоро планируют получить помидоры-гиганты кубической формы, чтобы их было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей. Был создан "помидор с жабрами" - помидор, в который для увеличения морозоустойчивости вживили ген североамериканской плоской рыбы. Кстати, именно этот гибрид овоща и рыбы получил кличку "завтрак Франкенштейна". В Московском институте картофелеводства выводится картофель с человеческим интерфероном крови, который повышает иммунитет. А в Институте животноводства получен патент на овцу, у которой в молоке присутствует сычужный фермент, необходимый для производства сыра. Специалисты утверждают, что при новой технологии производства сыра, достаточно будет всего 200 овец, чтобы обеспечить сыром всю Россию. Сегодня ученые работают над созданием "умных растений", которые могут посылать фермерам сигнал SOS, светиться, когда им не хватает воды или при первых признаках заболевания. Полным ходом идут работы по созданию пластмассы, которая бы разрушалась, попадая в окружающую среду - в масличные культуры вводят гены бактерий, позволяющие выращивать эту биоразлагаемую пластмассу прямо на полях. Недавно американцы заявили, что им удалось добавить в генную структуру обычного хлопка гены растений, цветущих голубым цветом. Появилась реальная возможность революционизировать рынок джинсовой ткани - красильное производство прекратит сброс в окружающую среду ядовитых сточных вод. Эта технология будет запущена в производство в 2005 году. Эксперименты ведутся и в другой области - области запахов. Некоторые не любят запах роз, считая его слишком приторным, - для таких людей можно выращивать розы, благоухающие лимоном. Можно даже вырастить розу, издающую аромат духов Кельвина Клайна - манипуляции с генами, отвечающими за запах, позволяют вывести растения с любым ароматом. 1. По заверениям ученых демографов, в ближайшие двадцать лет население земного шара удвоится. Пользуясь современными агрокультурами и агротехнологиями, прокормить такое количество людей будет просто невозможно. Следовательно, уже сейчас пора подумать о том, как с наименьшими потерями поднять урожайность сельхозугодий вдвое. Поскольку для обычной селекции срок в два десятилетия крайне мал, то остается механическая модификация генетического кода растений. Можно, например, добавить ген устойчивости к насекомым-вредителям или сделать растение более плодовитым. Это основной довод трансгенетиков. 2. С помощью генной инженерии можно увеличить в генетически измененной продукции содержание полезных веществ и витаминов по сравнению с «чистыми» сортами. Например, можно «вставить» витамин А в рис, с тем чтобы выращивать его в регионах, где люди испытывают его нехватку. 3. Можно существенно расширить ареалы посева сельхозпродуктов, приспособив их к экстремальным условиям, таким, как засуха и холод. 4. Путем генетической модификации растений можно существенно уменьшить интенсивность обработки полей пестицидами и гербицидами. Ярким примером здесь является уже состоявшееся внедрение в геном кукурузы гена земляной бактерии Bacillus thuringiensis, уже снабжающего растение собственной защитой, так называемым Bt-токсином, и делающего по замыслу генетиков дополнительную обработку бессмысленной. 5. Генетически измененным продуктам могут быть приданы лечебные свойства. Ученым уже удалось создать банан с содержанием анальгина и салат, вырабатывающий вакцину против гепатита B. 6. Еда из генетически измененных растений может быть дешевле и вкуснее. 7. Модифицированные виды помогут решить и некоторые экологические проблемы. Конструируются растения, эффективно поглощающие цинк, кобальт, кадмий, никель и прочие металлы из загрязненных промышленными отходами почв. 8. Генная инженерия позволит улучшить качество жизни, очень вероятно - существенно продлить её; есть надежда найти гены, ответственные за старение организма и реконструировать их. ЗАКЛЮЧЕНИЕ В своем реферате я рассмотрела очень интересную тему - генетика, генная инженерия и биотехнологии. Таким образом, генетика занимает важное место в жизни человека. Именно она объясняет механизмы наследования признаков человека, как патологических, так и положительных. Так, пол человека - это менделирующий признак, наследуемый по принципу обратного скрещивания. У женщин пол гетерогаметен (XY), у мужчин гомогаметен. Среди признаков, подчиняющихся законам Г. Менделя, существуют признаки наследуемые сцепленно. Однако сцепление часто бывает неполным, причина тому кроссинговер, который имеет важное биологическое значение - лежит в основе комбинативной изменчивости. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:Ф. Антала, Дж. Кайгер, Современная генетика, Москва, “Мир”, 199, Т.1. с.63-80.С.Г. Инге-Вечтомов, Генетика с основами селекции, Москва, “Высшая школа”, 1989, с.85-111, с.154-165.Н.П. Дубинин, Общая генетика, Москва, “Наука”, 1970, с.142-169.БМЭ, Москва, “Советская энциклопедия”, 1962г., Т.25. с.671-673.Н. Грин, Биология, Москва, “Мир”, 1993.А.П. Пеков, Биология и общая генетика, Москва, Издательство Российского универститета дружбы народов, 1994, с.131-139.М.Е. Лобашев, Генетика, Ленинград, Издательство Ленинградского университета, 1967, с.680-714.В.Н. Ярыгин, Биология, Москва, “Медицина”, 1985, с.82-87.Ф. Кибернштерн, Гены и генетика, Москва, “Параграф”, 1995.В.П. Балашов, Т.Н. Шеворокова, Задачник по медицинской генетике, Саранск, Издательство Мордовского университета, 1998.Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |