бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Эволюционное учение

Эволюционное учение

Доклад по биологии

« Эволюционное учение »

02.06.2009г

Кепдип Нжог Аший Флориян

Гр. 8323 б

МИКРОЭВОЛЮЦИЯ

Микроэволюция: это совокупность пусковых эволюционных процессов, протекающих внутри вида, в пределах отдельных или смежных популяций. При этом популяции рассматриваются как элементарные эволюционные структуры; мутации, лежащие в основе наследственной изменчивости, -- как элементарный эволюционный материал, а мутационный процесс, волны жизни, разные формы изоляции и естественный отбор -- как элементарные эволюционные факторы. Под давлением этих факторов происходит изменение генотипического состава популяции -- ведущий пусковой механизм эволюционного процесса. Ранее термин «Микроэволюция» употреблялся некоторыми эволюционистами для обозначения изменчивости и формообразования внутри вида и противопоставлялся макроэволюции. Современное учение о Микроэволюция развилось после синтеза генетики с классическим дарвинизмом, начало чему было положено работами советского генетика С. С. Четверикова (1926) и английского генетика Р. А. Фишера (1930). По современным воззрениям (иногда называемым «синтетической теорией эволюции»), все основные пусковые механизмы эволюции (на всех её уровнях) протекают внутри видов, т. е. на микроэволюционном уровне. Микроэволюция завершается видообразованием, т. е. возникновением видов, репродуктивно изолированных от исходных и других близких видов. Поэтому нет принципиальных различий между Микроэволюция и макроэволюцией, различающихся лишь временными и пространственными масштабами. Для успеха исследований на микроэволюционном уровне необходим синтез популяционно-генетических опытов, количественных описаний процессов популяционной динамики и экологии, изучения этологических явлений, аналитического применения теоретических положений генетики и, наконец, построения математических моделей внутрипопуляционных и межпопуляционных процессов.

Основные формы организации жизни:

Определение жизни

Вопросы о происхождении жизни, закономерностях исторического развития в различные геологические эпохи всегда интересовали человечество. Понятие жизнь охватывает совокупность всех живых организмов на Земле и условия их существования.

Сущность жизни заключается в том, что живые организмы оставляют после себя потомство. Наследственная информация передается из поколения в поколение, организмы саморегулируются и восстанавливаются при воспроизводстве потомства. Жизнь -- это особая качественная, наивысшая форма материи, способная, оставляя потомство, к самовоспроизведению.

Понятию жизнь в разных исторических периодах давались различные определения. Первое научно правильное определение дал Ф. Энгельс: "Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел". При прекращении процесса обмена веществ между живыми организмами и окружающей средой белки распадаются, и жизнь исчезает.

Опираясь на современные достижения биологической науки, русский ученый М. В. Волькенштейн дал новое определение понятию жизнь: "Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров -- белков и нуклеиновых кислот". Это определение не отрицает наличие жизни и на других планетах космического пространства. Жизнь называется открытой системой, на что указывает непрерывный процесс обмена веществ и энергии с окружающей средой.

На основании последних научных достижений современной биологической науки дано следующее определение жизни: "Жизнь -- это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров -- белков и нуклеиновых кислот".

Основой всего живого считаются нуклеиновые кислоты и белки, так как они функционируют в клетке, образовывают сложные соединения, которые входят в структуру всех живых организмов.

Основные свойства живых организмов

Живые организмы отличаются от неживой природы присущими им свойствами. К характерным свойствам живых организмов относятся: единство химического состава, обмен веществ и энергии, сходство уровней организации. Для живых организмов характерны также размножение, наследственность, изменчивость, рост и развитие, раздражимость, дискретность, саморегуляция, ритмичность и др.

Изменчивость. Мутационный процесс

Мутация -- это внезапное наследственное изменение, вызванное резким структурным и функциональным изменением генетического материала. Генетический материал организован в иерархию структурно-функциональных единиц -- от молекулярных сайтов внутри гена до целых хромосом и геномов. Соответственно существуют разные типы мутаций -- от генных до геномных. Эта глава посвящена в основном генным мутациям.

Внезапные наследственные изменения фенотипа могут быть вызваны не только структурными изменениями генов, но и другими генетическими процессами. Мутации могут быть истинными или ложными. Фенотипические изменения сами по себе не дают представления о тех генетических процессах, которые их вызывают. На основании одних лишь прямых наблюдений трудно различать разные типы истинных и ложных мутаций. Существует также, как мы увидим в дальнейшем, внезапное изменение генетического материала, не вызывающее фенотипического эффекта.

Генные мутации

Генная, или точковая, мутация представляет собой изменение последовательности нуклеотидов в пределах одного гена, приводящее к изменению характера действия гена. Как правило (за одним исключением, которое будет описано в следующем разделе), это молекулярное изменение в гене, которое вызывает фенотипический эффект. Допустим, что какой-то ген содержит в некоторой своей точке кодов, или триплет, ЦТТ, кодирующий одну из аминокислот полипептидной цепи -- глутаминовую кислоту. В результате замены всего лишь одного нуклеотида кодом ЦТТ может превратиться в кодон ГТТ, Этот новый кодон обусловливает синтез уже не глутаминовой кислоты, а глутамина, так что в полипептидной цепи, синтезируемой под действием измененного гена, на месте глутаминовой кислоты окажется глутамин. Первоначальная и мутантная молекулы белка отличаются одна от другой, и вполне возможно, что это влечет за собой другие, вторичные, фенотипические различия.

Стабильность генов на протяжении последовательных поколений клеток и особей, а следовательно, и консервативность наследственности обусловлены точностью процесса копирования при репликации гена, Однако процесс копирования несовершенен. Время от времени при копировании возникают ошибки. Генные мутации можно рассматривать как такие ошибки копирования.

Новый мутантный аллель точно реплицируется до тех пор, пока не произойдет следующее мутационное изменение. Таким образом, в результате генной мутации появляется пара или серия гомологичных аллелей. И наоборот, наличие аллельной изменчивости по любому гену в конечном счете означает, что этот ген в то или иное время претерпел мутацию.

Любой ген, входящий в состав генотипа, по-видимому, подвержен мутированию. Во всяком случае в генах, контролирующих весьма разнообразные признаки, наблюдаются мутации. Например, у Drosophila melanogaster известны мутанты со слегка сморщенными крыльями, сильно укороченными крыльями или вообще бескрылые; мутанты с белыми или пурпурными глазами; мутанты с разнообразными изменениями щетинок и т. п. Известен ряд мутантных разновидностей смородинного томата (Lycopersicon pimpinellifolium), различающихся по форме листьев. Биохимические мутации, затрагивающие различные звенья метаболических процессов, хорошо известны у микроорганизмов и имеются, хотя и гораздо менее изучены, у высших организмов.

По степени фенотипического проявления генные мутации варьируют в широком диапазоне -- от мутаций со слабыми эффектами до мутаций, вызывающих значительные изменения фенотипа. Эти два экстрёмальных типа называют соответственно малыми мутациями и макромутациями. Хорошо заметные, но не обладающие сильным действием мутации типичны для средней части диапазона. Примерами малых мутаций служат мутанты Drosophila melanogaster со статистически незначительными отклонениями от нормальной жизнеспособности или от нормального числа щетинок. Примером макромутации служит мутант tetraptera у D. melanogaster с четырьмя крыльями вместо двух. Он представляет собой резкое отклонение от двукрылости, характерной для сем. Drosophilidae и для отряда Diptera.

У диплоидных животных и растений значительную долю новых мутаций составляют рецессивные мутации, а гены дикого типа доминируют. Важное следствие рецессивности многих мутантных аллелей заключается в том, что они не подвергаются действию отбора немедленно, но могут сохраняться в диплоидной популяции на протяжении многих поколений.

Типы точковых мутаций

Точковые мутации можно разделить на несколько типов в зависимости от характера молекулярного изменения в гене. Здесь мы кратко опишем четыре типа таких мутаций (Wallace, 1981*)

1. Missense-мутация. К этому типу принадлежит мутация, описанная в предыдущем разделе. В одном из триплетов происходит замена одного основания (например, ЦТТ>ГТТ), в результате чего измененный триплет кодирует аминокислоту, отличную от той, которую кодировал прежний триплет.

2. Мутация со сдвигом рамки. Если в последовательность ДНК включается новое основание или пара оснований, то все лежащие за ними триплеты изменяются, что влечет за собой изменение синтезируемого полипептида. Возьмем, например, последовательность АТТ--ТАГ--ЦГА, перед которой включилось основание Т. В результате получится новая последовательность ТАТ--ТТА--ГЦГ--А… К такому же результату приведёт утрата одного из имеющихся оснований.

3. Nonsense-мутация. В результате замены одного основания возникает новый триплет, представляющий собой терминирующий кодон. В генетическом коде имеется три таких триплета. При такой замене синтез полипептидной цепи прекращается в новой (т. е. другой) точке, и соответственно эта цепь отличается своим свойствам от полипептида, который синтез прежде.

4. Синонимическая missence-мутация. Генетический код обладает значительной избыточностью: два или несколько его триплетов кодируют одну и ту же аминокислоту. Поэтому можно ожидать, что в некоторых случаях при замене оснований один триплет заменяется другим -- синонимическим, кодирующим ту же аминокислоту. В этом случае, вследствие избыточности кода мы имеем дело с молекулярным изменением в пределах данного гена, которое не вызывает фенотипического эффекта. Такие синонимические мутации, вероятно, довольно обычны.

Частота возникновения мутаций (скорость мутирования)

Некоторые репрезентативные значения частоты возникновения спонтанных мутаций (мутаций в обычном смысле слова, т.е. вызывающих фенотипические эффекты) приведены в табл. 6.1. Следует отметить, во-первых, что частота мутаций в общем невелика, и, во-вторых, что разные гены у одного и того же вида часто сильно различаются по мутабильности. Например, у кукурузы ген окраски растения отличается высокой частотой мутаций, тогда как ген восковидно-крахмального эндосперма высоко стабилен. Наконец, в-третьих, частота возникновения мутаций у бактерий ниже, чем у многоклеточных организмов, причём различия колеблются от одного до нескольких порядков величин. Следует указать, что приведённые в таблице данные по нескольким бактериальным генам можно считать репрезентативными, поскольку они выбраны из гораздо большего количества данных. В общем, гены бактерий, по-видимому, более стабильны, чем гены эукариотических организмов.

Имеются основания считать, что по крайней мере некоторые оценки частоты мутаций у высших организмов завышены. Один из источников ошибок -- трудность в различении истинных внутригенных мутаций и редких рекомбинаций очень тесно сцепленных генных единиц. Эти два явления могут приводить к одинаковому видимому результату, а именно к резкому фенотипическому изменению, передающемуся по наследству. Любой обширный набор мутаций какого-либо диплоидного организма, наблюдаемый на фенотипическом уровне, по всей вероятности, содержит помимо истинных генных мутаций некоторую долю необнаруженных редких рекомбинаций, что искажает оценку частоты мутаций в сторону повышения .

Другой возможный источник завышенной оценки частоты мутаций -- невыявленное селективное преимущество гетерозиготной формы над соответствующими гомозиготами в диплоидных популяциях.

Если даже истинная частота мутаций у высших организмов на порядок ниже, чем показывают современные оценки, то всё же эта частота достаточна, чтобы поддерживать уровень мутационной изменчивости в популяциях. В популяции средней величины, продуцирующей до 100 млн. гамет, на каждый ген в среднем будет возникать по крайней мере по нескольку новых мутаций в каждом поколении.

Генотипический контроль

У Drosophila melanogaster известен ген, который вызывает высокую частоту мутаций других генов данного комплемента. Этот ген-мутатор обозначают символом Hi. У мух, гомозиготных по гену Hi, частота мутаций в 10 раз выше обычной; у гетерозигот по этому гену частота мутаций выше обычной в 2 -- 7 раз. Ген Hi индуцирует как видимые, так и летальные мутации во многих генах. Он вызывает также инверсии -- один из типов хромосомных мутаций (Ives, 1950; Hinton, Ives, Evans, 1952*).

Выше мы рассматривали генные мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, и это, несомненно, само по себе верно. Однако, как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой мутационной изменчивости, которая имеет важное значение для долговременного успеха данного вида в эволюции, может быть не целиком предоставлено воле случая, а инициироваться генамимутаторами. Частота возникновения мутаций у данного вида частично может быть одним из генотипически контролируемых компонентов всей его генетической системы.

Близкородственные виды Drosophila willistoni и D. prosaltans, обитающие в тропических областях Америки, различаются по частоте возникновения мутаций. Представлены частоты летальных мутаций в хромосомах II и III у этих двух видов.

Вид D. willistoni, у которого частота мутаций выше, обычен, широко распространен и занимает разнообразные экологические ниши, тогда как D. prosaltans встречается редко и лишь в строго определённых экологических условиях. Было высказано весьма правдоподобное мнение, что высокая частота возникновения мутаций, поставляющих новые варианты, способствует повышению экологического разнообразия D. willistoni, а тем самым и обилию этого вида (Dobzhansky, Spassky, Spassky, 1952*).

Адаптивная ценность

Большинство новых мутантов характеризуется более низкой жизнеспособностью, чем нормальный, или дикий, тип. Снижение жизнеспособности может быть выражено в разной степени -- от чуть заметного субвитального состояния до полулетальности и летальности. При оценке жизнеспособности мутантов Drosophiia melanogaster, возникших в результате мутаций в Х-хромосоме, 90% оказались менее жизнеспособными, чем нормальные мухи, а 10% были супервитальными, т.е. обладали повышенной жизнеспособностью. Среди 90% мух с пониженной жизнеспособностью наблюдается весь диапазон изменений от слабой субвитальности (45%) через промежуточные стадии понижения жизнеспособности до полулетальности (6%) и летальности (14%) (Тимофеев-Ресовский, 1940*).

Вообще адаптивная ценность новых мутантов обычно бывает понижена. Адаптивная ценность слагается из плодовитости и функциональной полезности морфологических признаков, а также физиологической жизнеспособности. Многие мутанты неплодовиты независимо от того, обладают они нормальной жизнеспособностью или нет.

Морфологические макромутации обычно сопровождаются нарушениями функциональной эффективности. Из обширной выборки индуцированных мутантов ячменя (Hordeum vulgare) у 99% адаптивная ценность была понижена (Gustafsson, 1951*).

Этим наблюдениям легко дать объяснение. Все гены, входящие в состав генотипа нормальной, или дикой, формы на протяжении многих поколений подвергались естественному отбору; они прошли сквозь сито отбора, в результате чего сохранились те из них, которые обладали максимальной адаптивной ценностью. Следует ожидать, что любые изменения в таких генах почти наверное окажутся изменениями к худшему, подобно тому, как копанье наугад в часовом механизме скорее нарушит, чем усовершенствует его «функциональную эффективность».

Генные мутации нередко называют случайными изменениями в генах. В данном контексте определение «случайные» требует разъяснения. Мутационные изменения на самом деле могут не быть случайными на молекулярном уровне. Определенные изменения последовательности нуклеотидов могут возникать в цепи ДНК чаще, чем другие. Так называемая случайность мутационного процесса относится не к молекулярному строению, а к адаптивным свойствам мутантных генов. Мутации случайны в том смысле, что они не направлены в сторону какого-либо нынешнего или будущего состояния приспособленности данного организма.

И всё же небольшая доля всей массы генных мутаций, как это было установлено у генетически хорошо изученных организмов, в том или другом отношении превосходит стандартный тип. Так, в одной выборке мутантов ячменя примерно 0.1--0.2% мутантов обладали повышенной урожайностью в стандартной или в обычной для родительской формы среде (Gustafsson, 1951*).

Мутант, обладающий низкой адаптивной ценностью в стандартных условиях среды, может оказаться адаптивно более ценным в других условиях. Один из мутантов Drosophila funebris --мутант eversae -- при 15°С обладает пониженной жизнеспособностью (98% от жизнеспособности дикого типа), но при 24 °С его жизнеспособность выше (104%) (Dobzhansky, 1951*). Шесть мутантов львиного зева (Antirrhinum majus) при нормальных условиях в теплице проявляли более низкие качества, чем родительская линия, но при различных аномальных условиях в теплице они превосходили родительскую линию по росту (Brucher, 1943; Gustafsson, 1951*).

Относительное значение в эволюции малых мутаций и макромутаций

Большинство эволюционных генетиков подчеркивают важную роль в эволюции малых мутаций. Согласно же мнению меньшинства, к которому принадлежат Гольдшмидт (Goldschmidt, 1940; 1952; 1953; 1955*) и некоторые другие ученые, главную роль в эволюции играют макромутации. В прошлом между сторонниками двух указанных противоположных точек зрения было много споров, которые, однако, излишни, поскольку эти взгляды не исключают, а напротив, дополняют друг друга. В эволюции играют роль как малые мутации, так и макромутации.

Как сырье для эволюционных изменений малые мутации обладают некоторыми явными преимуществами. Каждая малая мутация вызывает лишь небольшой фенотипический эффект --к лучшему или к худшему. Поэтому аллель, возникший в результате малой мутации и обладающий слабым преимуществом, может включиться в уже существующий генотип, не вызывая какой-либо резкой дисгармонии. При помощи ряда малых мутаций, происходящих в разных локусах, можно создать тот или иной адаптивно количественный эффект, не нарушая функциональной эффективности организма во время промежуточных стадий этого процесса.

Вероятность сохранения новой мутации

Каждый отдельный мутантный аллель при своем первом возникновении бывает редок. Насколько вероятно, что он сохранится в родительской популяции? Мы знаем, что частота нового мутантного аллеля, нe может увеличиваться за счет одного лишь процесса воспроизведения. Вероятность же чисто случайной элиминации мутантного аллеля, напротив, очень велика.

Фишер (Fisher, 1930; 1958*) вычислил вероятность сохранения нового мутантного аллеля, возникшего у одной особи в обширной популяции Как показывают его данные, шансы на сохранение единичной мутации заметно понижаются с каждым поколением. Если мутантный аллель в селективном отношении нейтрален, то вероятность его исчезновения к 31-му поколению составляет 94%, а к 127-му -- 98%. Если он обладает небольшим селективным преимуществом (порядка 1%), то вероятность его исчезновения несколько снижается (93 и 97% в поколениях 31 и 127 соответственно), но остается высокой.

Давление мутаций

Роль мутационного процесса в эволюции можно определить следующим образом. Мутации служат основным источником новшеств в популяциях. Однако мутационный процесс обычно не представляет собой важной эволюционной силы. Частота возникновения мутаций столь низка, что само по себе мутационное давление не может вызвать существенных изменений частот генов в популяциях. Кроме того, прямые мутации А>а со временем отсеиваются, полностью или частично, в результате обратных мутаций а>А.

Приведенное выше утверждение касается нормы. В тех особых ситуациях, когда давление мутаций становится значительной силой, вполне могут возникнуть исключения. Во всей Британской Колумбии и на Аляске окраска цветков у Epilobium angustifolium по большей части одинакова; однако в одной популяции, растущей на вершине урансодержащих гор вблизи Большого Медвежьего озера (Канада), обнаружены многочисленные мутантные растения с аберрантными бледно-розовыми цветками (Shacklett, 1964*). Высокая частота хромосомных мутаций наблюдалась у растений, выращенных из семян, которые находились в зоне извержения вулкана в Исландии (Love, 1949*).

Так или иначе мутационное давление независимо от его интенсивности не может быть направляющей силой эволюции. Огромное большинство мутаций, как мы видели, вредны и им суждено быть элиминированными из популяции. Ориентация, или направленность, процесса эволюции определяется другими эволюционными силами.

Эволюционные процессы в популяциях

Эволюционное изменение -- это явление, относящееся к популяциям и системам популяций. В своей простейшей форме эволюция осуществляется в пределах локальных воспроизводящихся популяций. Это микроэволюция. Локальную воспроизводящуюся популяцию можно рассматривать как плацдарм для микроэволюции. Необходимо поэтому начать наш обзор процессов микроэволюции с разбора общих свойств популяций.

«Популяция -- достаточно многочисленная совокупность особей определённого вида, в течение большого числа поколений населяющая определённое пространство (внутри которого нет установившихся изоляционных барьеров) и отделенная от таких же совокупностей особей данного вида той или иной степенью давления тех или иных форм изоляции. Это определение приложимо только к двуполым скрещивающимся формам. Популяцией у организмов, размножающихся бесполым путем или путем облигатного партеногенеза или самооплодотворения, нужно считать группу особей клона или чистой линии (или смеси клонов и чистых линий), занимающих определённый ареал и отделенную от таких же совокупностей особей пространством с меньшей численностью или отсутствием особей данного вида» (Яблоков, Ларина, 1985?). Такое определение соответствует широкому кругу реально существующих популяций.

Целесообразно представлять себе популяции и популяционные системы в виде иерархии -- от случайно скрещивающейся группы до вида. Скрещивающаяся популяция -- популяционная единица, имеющая некую локальную протяженность в этой непрерывной иерархии.

Структура популяции

Скрещивающаяся популяция представляет собой репродуктивную единицу. У организмов с половым размножением -- это сообщество особей, связанных между собой узами скрещивания и взаимоотношениями родители -- потомки (Dobzhansky, 1950*). У организмов с бесполым размножением сохраняются связи родители -- потомки, но перекрестные связи между особями, обусловленные скрещиванием, сильно ослаблены; не следует, однако, полностью исключать наличие у бесполых организмов таких связей, поскольку у многих организмов, которые обычно размножаются бесполым путем, существуют те или иные парасексуальные способы размножения или же время от времени происходит возврат к половому размножению. Популяция, как правило, представляет собой свободно скрещивающуюся группу, независимо от того, происходит ли скрещивание регулярно или эпизодически, и во всех случаях это некая репродуктивная единица. Популяция представляет собой также экологическую единицу. Составляющие её особи генотипически сходны по своей экологической толерантности, занимают определённую область в той или иной экологической нише или местообитании и предъявляют сходные требования к условиям среды.

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.