бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Этапы развития биологии. Генетика и эволюция

p align="left">Эти данные Ламарк обобщает через призму ряда новых для того времени теоретических и методологических представлений. Во-первых, он настойчиво подчеркивает важность времени как фактора эволюции органических форм. Во-вторых, последовательно проводит представление о развитии органических форм как о естественном процессе восхождения их от высших к низшим. В-третьих, включает в свое учение качественно новые моменты в понимании роли среды в развитии органических форм. Если до Ламарка господствовало представление о том, что среда -- это либо вредный для организма фактор, либо, в лучшем случае, нейтральный, то благодаря Ламарку среду стали понимать как условие эволюции органических форм.

Творчески синтезируя все эти эмпирические и теоретические компоненты, Ламарк сформулировал гипотезу эволюции, базирующуюся на следующих принципах: принцип градации (стремление к совершенству, к повышению организации); принцип прямого приспособления к условиям внешней среды, который, в свою очередь, конкретизировался в двух законах:

во-первых, изменения органов под влиянием продолжительного упражнения, (неупражнения) сообразно новым потребностям и привычкам;

во-вторых, наследования таким приобретенных изменений новым поколением.

Согласно этой теории, современные виды живых существ произошли от ранее живших путем приспособления, обусловленного их стремлением лучше гармонизировать с окружающей средой. Например, жираф, доставая растущие на высоком дереве листья, вытягивал свою шею, и это вытягивание было унаследовано его потомками.

Хотя эволюционная концепция Ламарка казалась его современникам надуманной и мало кем разделялась, тем не менее, она носила новаторский характер, была первой обстоятельной попыткой решения проблемы эволюции органических форм. Особенно важно то, что Ламарк искал объяснение эволюции во взаимодействии организма и среды и стремился материалистически трактовать факторы эволюции.

Главная теоретико-методологическая трудность, стоявшая перед Ламарком, заключалась в воспроизведении диалектического взаимодействия внешнего и внутреннего, организма и среды. Эту проблему решить ему не удалось. В результате внешний (эктогенез) и внутренний (автогенез) факторы эволюции в его концепции трактовались независимо друг от друга" Это создавало возможность идеалистической трактовки автогенеза, что и нашло свое выражение в концепциях психоламаркизма (Э. Геринг, О. Гертвиг и др.).. Кроме того, Ламарк опирался на ряд исходных допущений, которые упрощали сам подход к проблеме - отождествление наследственной изменчивости и приспособления организма; историческая неизменяемость факторов эволюции и др. Поэтому не удивительно, что Ламарку не удалось решить фундаментальные проблемы, стоящие перед любой эволюционной концепцией (диалектика наследственности и изменчивости, проблема органической телеологии, взаимосвязь необходимости и случайности и др.).

В начале XIX в. наука еще не располагала достаточным материалом для того, чтобы ответить на вопрос о происхождении видов иначе, как предвосхищая будущее, пророчествуя о нем. Первым таким “пророком” и стал Ламарк.

1.3 Естествознание второй половины ХIXв.: на пути к научной революции

1.3.1 Утверждение теории эволюции Ч. Дарвина

Нужно определенное время, чтобы новая теория окончательно утвердилась в науке. Процесс утверждения теории есть процесс превращения предпосылок теории в ее неотъемлемые компоненты, логически выводимые из оснований теории. При этом изменяется множество различных понятий, представлений, допущений, гипотез и других средств познавательной деятельности, ценностных и методологических компонентов познания.

Эволюционная теория Ч. Дарвина -- сложнейший синтез самых различных биологических знаний, в том числе опыта практической селекции. Поэтому процесс утверждения теории затрагивал самые разнообразные отрасли биологической науки и носил сложный, подчас драматический характер, протекал в напряженнейшей борьбе различных мнений, взглядов, школ, мировоззрений, тенденций и т. д. Против теории естественного отбора ополчились не только сторонники креационистских воззрений и антиэволюционисты (А. Седжвик, Р. Оуэн, Л. Агассис, А. Мильн-Эдвардс, А. Катрфаж, Г. Меррей, С. Карпентер и др.), но и естествоиспытатели, выдвигавшие и обосновывавшие другие эволюционные концепции, построенные на иных, чем дарвиновская теория, принципах, -- неоламаркизм (К.В. Негели и др.), мутационизм (С.И. Коржинский с его идеей гетерогенезиса, т.е. скачкообразного возникновения новых видов, и др.), неокатастрофизм (Э. Зюсс и др.), телеологические концепции разного рода (Р.А. Келликер с идеей автогенетического “стремления к прогрессу”; А. Виганд, признававший существование идеальной “образовательной силы” эволюционного процесса, которая, по его мнению, уже иссякла и потому эволюция прекратилась; и др.). Более того, в самом дарвиновском учении выделились относительно самостоятельные направления, каждое из которых по-своему понимало, дополняло и совершенствовало воззрения Ч. Дарвина. Будучи необходимым логическим звеном в развитии дарвинизма, такая дифференциация объективно влекла за собой ослабление лагеря дарвинистов, снижение полемической остроты их выступлений.

Все это привело к тому, что картина развития биологии во второй половине XIX в. была очень пестрой, мозаичной, заполненной противоречиями, драматическими событиями, страстной борьбой мнений, школ, направлений, взаимным непониманием позиций, а часто и нежеланием понять точку зрения другой стороны, обилием поспешных, непродуманных и необоснованных выводов, опрометчивых прогнозов и замалчивания выдающихся достижений. В этом насыщенном самыми разнообразными красками полотне отразились борьба материализма и идеализма, метафизики и диалектики, противоречия социально-культурного контекста развития естествознания.

Вокруг роли, содержания, интерпретации принципов дарвиновской теории велась острая и длительная борьба, особенно вокруг принципа естественного отбора. Можно указать на четыре основных явления в системе биологического познания второй половины XIX-- начала XX в., которые были вехами в процессе утверждения принципов теории естественного отбора:

 * возникновение и бурное развитие так называемого филогенетического направления, вождем и вдохновителем которого был Э. Геккель;

 * формирование эволюционной биологии -- проникновение

 * эволюционных представлений во все отрасли биологической науки;

 * создание экспериментально-эволюционной биологии;

* синтез принципов генетики и дарвинизма и создание основ синтетической теории эволюции.

Объяснение эмпирических аномалий и вплетение их в систему дарвиновского учения наиболее ярко воплотилось в бурном развитии в 60--70-х гг. XIX в. филогенетического направления, ориентированного на установление родственных связей между видами, на поиски переходных форм и предковых видов, на анализ генезиса крупных таксонов, изучение происхождения органов и др. Общая задача филогенетического направления, как сформулировал ее вождь этого направления Э. Геккель, состояла в создании “филогенетического древа” растений и животных на основе, прежде всего данных анатомии, палеонтологии и эмбриологии.

В рамках филогенетического направления были вскрыты и исследованы закономерности, имеющие общебиологическую значимость: биогенетический закон (Э. Геккель, Ф. Мюллер, А.О. Ковалевский, И.И. Мечников), закон необратимости эволюции (Л. Долло), закон более ранней закладки в онтогенезе прогрессивных органов (Э. Менерт), закон анадаптивных и инадаптивных путей эволюции (В.О. Ковалевский), принцип неспециализированности предковых форм (Э. Коп), принцип субституции органов (Н. Клейненберг), закон эволюции органов путем смены функций (Л. Дорн) и др. Не все из этих закономерностей рассматривались биологами как формы обоснования и подтверждения дарвиновской теории. Более того, на базе некоторых из них выдвигались новые концепции эволюции, которые, по замыслу их авторов, должны были опровергнуть дарвиновскую теорию и заменить ее новой эволюционной теорией. Это характерно для периода утверждения любой фундаментальной теории: пока теория окончательно не сложилась, не подчинила себе свои предпосылки, не продемонстрировала свои предсказательные возможности, способность объяснять факты предметной области, часты попытки заменить ее другими теориями, построенными на иных принципах.

Обобщение принципов эволюционной теории, выявление пределов, при которых они не теряют своего значения, проявилось в интенсивном формировании комплекса эволюционной биологии (т.е. эволюционных направлений в системе биологического знания -- систематики, палеонтологии, морфологии, эмбриологии, биогеографии и др.), имевшем место в 60--70-е гг. XIX в.

Возникновение экспериментально-эволюционной биологии во многом было вызвано необходимостью эмпирического обоснования и теоретического утверждения принципов дарвиновской теории, экспериментальной проверки и углубления понимания факторов и законов эволюции. Особенно это касалось принципа естественного отбора, где яркие экспериментальные результаты получили в конце XIX в. В. Уэлдон (1898), Е. Паультон (1899) и др.

Завершение утверждения принципов дарвиновской теории происходит уже в начале XX в., когда сформировалась синтетическая теория эволюции, внутренне интегрировавшая дарвинизм, генетику и экологию.

Таким образом, к рубежу XIX--XX вв. биология, как и физика, подошла в состоянии глубокого кризиса своих методологических оснований, вызванного в первую очередь устаревшим содержанием методологических установок классической биологии. Кризис проявился, прежде всего, в многообразии и противоречии оценок и интерпретаций сущности эволюционной теории и интенсивно накапливавшихся данных в области генетики.

1.3.2 Становление учения о наследственности (генетики)

Истоки знаний о наследственности весьма древние. Наследственность как одна из существенных характеристик живого известна очень давно, представления о ней складывались еще в эпоху античности. Долгое время вопрос о природе наследственности находился в ведении эмбриологии, в которой вплоть до XVII в. господствовали фантастические и полуфантастические представления.

Во второй половине XVIII в. учение о наследственности обогащается новыми данными -- установлением пола у растений, искусственной гибридизацией и опылением растений, а также отработкой методики гибридизации. Одним из основоположников этого направления является И.Г. Кельрейтер, тщательно изучавший процессы оплодотворения и гибридизации. Он открыл явление гетерозиса -- более мощного развития гибридов первого поколения, которое он не мог правильно объяснить. Опыты по искусственной гибридизации растений позволили опровергнуть концепцию преформизма. В этом отношении ботаника оказалась впереди зоологии.

Во второй половине XVIII -- начале XIX в. наследственность рассматривалась как свойство, зависящее от количественного соотношения отцовских и материнских компонентов. Считалось, что наследственные признаки гибрида являются результатом взаимодействия отцовских и материнских компонентов, их борьбы между собой, а исход этой борьбы определяется количественным участием, долей того и другого. Так, например, Т.Э. Найт наблюдал доминирование признаков гибридов в опытах по искусственному скрещиванию рас гороха.

В первой половине XIX в. стали складываться непосредственные предпосылки учения о наследственности и изменчивости -- генетики. Качественным рубежом здесь, по-видимому, оказались два события. Первое -- создание клеточной теории. Старая (философская, идущая от XVIII в.) идея единства растительного и животного миров должна была получить конкретно-научное выражение в форме теории, которая базируется на том, что инвариантные характеристики органического мира должны иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Второе событие -- выделение объекта генетики, т.е. явлений наследственности как специфической черты живого, которую не следует растворять в множестве свойств индивидуального развития организма. Такой подход сформулирован у О. Сажрэ и в полной мере получил свое развитие в творчестве Г. Менделя.

Создание клеточной теории было важнейшим шагом на пути разработки научных воззрений на наследственность и изменчивость. Познание природы наследственности предполагало выяснение вопроса, что является универсальной единицей структурной организации растительного и животного миров. Ведь инвариантные характеристики органического мира должны иметь и свое структурное выражение. Фундаментальной философской идеей, которая привела к открытию клетки, была идея единства растительного и животного миров; она пробивала себе дорогу в общественном сознании еще в XVII в., начиная с трудов Р. Декарта, Г.В. Лейбница, а позже -- французских материалистов XVIII в., особенно Д. Дидро, Ж. Ламетри и др. Как четкий ориентир для биологических исследований она была формулирована К.Ф. Вольфом, Л. Океном, Ж. Бюффоном, И.В. Гете, Э. Жоффруа Сент-Илером и др.

Следующий шаг на этом пути состоял в том, чтобы от общей идеи единства органического мира прийти к выводу, что такое единство должно иметь свое морфологическое выражение, проявляться в определенной структурной гомологии организмов. Именно в этом направлении работали многие ученые (П.Ж. Тюрпен, Я. Пуркине, Г. Валентина, А. Дютроше и др.), но только Т. Шванну удалось окончательно прояснить данный вопрос. Трудность состояла в том, что растительные и животные клетки, с одной стороны, а также клетки разных тканей животных -- с другой, выглядят мало похожими друг на друга, если использовать те приборы, которые были в распоряжении биологов начала XIX в. Сходным и легко различимым элементом всех клеток является ядро. Мысль об этом сформулировал М. Шлейден. Опираясь на нее, Т. Шванн разработал основные положения своей клеточной теории. В основе ее лежало утверждение, что клеткообразование -- универсальный принцип развития организма или, как писал Шванн, “всем отдельным элементарным частицам всех организмов свойствен один и тот же принцип развития” Шванн Т. Микроскопические исследования о соответствии в структуре и росте животных и растений. М.; Л., 1939. С.79.. Таким образом, клетка была выделена как универсальная инвариантная единица строения организма.

Ближайшим следствием из основ клеточной теории стало представление, в соответствии с которым процесс клеткообразования регулируется каким-то единым, универсальным механизмом, за которым скрывается загадка наследственности и изменчивости. Указание на существование такого механизма, по сути, являлось первым шагом на пути выделения качественно своеобразной предметной области учения о природе наследственности. Другими словами, создание клеточной теории позволяло “выйти” на объект генетики.

Особое место в истории учения о наследственности занимает творчество О. Сажрэ. Заслуга его в том, что он первый в истории учения о наследственности начал исследовать не все, а лишь отдельные признаки скрещивающихся при гибридизации растений. На этой основе (изучая гибридизацию тыквенных) он приходит к выводу, что неверна старая точка зрения, будто признаки гибрида всегда есть нечто среднее между признаками родителей. Признаки в гибриде не сливаются, а перераспределяются. Сажрэ писал: “Итак, мне представляется, в конце концов, что обычно сходство гибрида с обоими родителями заключается не в тесном слиянии различных свойственных им в отдельности признаков, а, скорее, в распределении, равном или неравном, этих признаков” Мендель Г., Ноден Ш., Сажрэ О. Избранные работы. М., 1968. С.64.. Иначе говоря, он первым понял корпускулярный, дискретный характер наследственности и выделил наследственность как специфический объект познания, отличный от процесса индивидуального развития организма, разграничил предмет генетики (как учения о наследственности) от предмета эмбриологии и онтогенетики (как учений об индивидуальном развитии организма). С работ Сажрэ начинается собственно научная генетика.

Вторая половина XIX в. - период не только создания теории естественного отбора, но и особенно бурного развития других важнейших отраслей биологической науки -- эмбриологии (К. Бэр), цитологии (М. Шлейден, Т. Шванн, Р. Вирхов, Г. Моль и др.), физиологии (Г. Гельмгольц, Э. Дюбуа-Реймон, К. Бернар); тогда же были заложены основы органической химии (Ф. Велер, Ю. Либих, М. Берло), получены существенные результаты в области гибридизации и явлений наследственности (Ш. Нодэн, Г. Мендель) и др.

Среди важнейших открытий данного периода можно указать следующие: описание митотического деления клеток и особенностей поведения хромосом (И.Д. Чистяков, Э. Страсбурге и др., 1873-1875); установление того, что первичное ядро зародышевой клетки возникает путем слияния ядер сперматозоидов и яйцеклетки (О. Гертвиг, Г. Фоль, 1875-1884); открытие продольного разделения хромосом и его закономерностей -- образование веретена, расхождение хромосом к полюсам и проч. (В. Флемминг, 1888); установление закона постоянства числа хромосом для каждого вида (Т. Бовери, Э. Страсбурге, 1878); установление того, что в половых клетках содержится половинный набор хромосом по сравнению с соматическими клетками (Э. ван Бенеден, 1883); описание процесса майоза и объяснение механизма редукции числа хромосом (В. И. Беляев, О. Гертвиг, 1884) и др.

Важнейшим событием в генетике XIX в. было формулирование Г. Менделем его знаменитых законов. Развивая идеи, содержавшиеся в работах Сажрэ, Мендель рассматривал не наследуемость всех признаков организма сразу, а выделял наследуемость единичных, отдельных признаков, абстрагируя эти признаки от остальных, удачно применяя при этом вариационно-статистический метод, демонстрируя эвристическую мощь математического моделирования в биологии. Открытие Менделем закономерностей расщепления признаков показало, что возникающие у организмов рецессивные мутации не исчезают, а сохраняются в популяциях в гетерозиготном состоянии. Это устранило одно из самых серьезных возражений против дарвиновской теории эволюции, которое было высказано английским инженером Ф. Дженкином, утверждавшим, что величина полезного наследственного изменения, которое может возникать у любой особи.

Заключение

В XX в. динамичное развитие биологического познания позволило открыть молекулярные основы живого и непосредственно приблизиться к решению величайшей проблемы науки -- раскрытию сущности жизни. Радикально изменились и сама биология, и ее место, роль в системе наук, отношение биологической науки и практики. Биология постепенно становится лидером естествознания.

Выражением этой тенденции являются следующие процессы: укрепление связи биологии с точными и гуманитарными науками; развитие комплексных и междисциплинарных исследований; увеличение каналов взаимосвязи с теоретическим познанием и со сферой практической деятельности, прежде всего с глобальными проблемами современности; явное участие запросов" практики в актуализации тех или иных проблем биологического познания; непосредственным основанием исследовательской деятельности в биологии все в большей степени выступают прямые практические потребности, интересы и запросы общества; непосредственно программирующая роль биологии по отношению к аграрной, медицинской, экологической и другим видам практической деятельности; возрастание ответственности ученых-биологов за судьбы человечества (прежде всего в связи с перспективами генной инженерии); непосредственное проявление гуманистического начала биологического познания, широкое внедрение ценностных подходов и др. Все в большей мере становится ясно, что логика биологического познания в перспективе будет непосредственно задаваться потребностями практического преобразования природы, развития общественных отношений и интересов людей.

Раздел II. Генетика и эволюция

Введение

Эволюция и генетика - это краеугольные камни понимания человечеством своего происхождения и путей развития жизни на Земле. В рассмотрении нашей темы войдут вопросы развития эволюционных учений, начиная с Эмпедокла, жившего в V веке до нашей эры, утверждавшего, что изначально были созданы различные органы - ноги, руки, ласты и т. д.; и заканчивая последней, наиболее совершенной (широко известной) теорией о происхождении видов Чарльза Дарвина, а также её оппонентов и многочисленных сторонников, самостоятельно занимающихся изучением и разработкой дарвиновской концепции. Также следует сказать, что генетика и эволюция - науки взаимосвязанные. Принципы генетики укрепили и дали прочную научную основу для развития эволюционных учений. Этот процесс начался с открытием законов Менделя и применением их к теории эволюции Дарвина.

В данной работе были использованы несколько источников:

1) книга известного биолога Ф. Шепарда «Естественный отбор и наследственность», посвящена исследованию в области эволюционной генетики, где были затронуты вопросы развития теории Дарвина как основополагающего эволюционного учения;

2) книга И. И. Пузанов «Жан Батист Ламарк», рассказывающая о Ламарке, как о зоологе и его реформаторских идей в области системы изучения беспозвоночных;

3,4) книга Семена Резника «Раскрывшаяся тайна бытия» и «Книга для чтения по дарвинизму» Э. А. Киселева повествуют об истории развития эволюционных учений и основных законов биологии, их содержанием;

5) учебник Г. И. Рузавина «Концепции современного естествознания» кратко формулирует основные положения теории эволюции;

6) учебник «Основы экологии» под редакцией Сапунова В.Б. И Обухова В.Л. раскрывает многие биологические понятия, термины.

1.1 Эволюционные воззрения Ламарка

Одним из первых ученых, занимавшихся исследованиями теории эволюции, был французский биолог Жан Батист Ламарк (1774-1829) придерживавшийся взгляда, что виды постепенно изменяются, порождая новые, т.е. эволюционируют. Значительный вклад Ламарка в биологическую мысль состоял в том, что он привел убедительные (для своего времени) аргументы в поддержку теории эволюции, выступив противником теории независимого и неизменного развития видов, утверждавшей, что с течением времени наблюдаются слабые отклонения от нормальных форм, но, в конце концов, эти уклонившиеся формы возвращаются к прежнему состоянию, что не может привести к возникновению новых видов.

Ламарк выдвинул гипотезу о факторах, контролирующих эволюционные изменения. Ламарк предполагал, что живые существа обладают способностью постепенно в течение многих поколений изменяться от простой структуры или организации к более сложной и совершенной. Также он заметил, что часто используемые органы, как правило, имеют тенденцию увеличиваться в размере и выглядят более развитыми по сравнению с теми, которые менее упражняются. Ученый предположил, что изменения, приобретенные организмом в течение жизни, могут наследоваться потомством в определенной степени. Удивительно тонкую и сложную структуру органов, обеспечивающих приспособленность к выполнению специфических функций, он объяснял изменениями, накапливаемыми в поколениях в результате наследования этих «приобретенных признаков».

Заслуга Ламарка состояла в том, что он строго придерживался эволюционной теории в то время, когда многие его коллеги твердо верили в создание определенных видов путем отдельных актов творения. Тем более, механизм наследования имел, вероятно, для него второстепенное значение по сравнению с главной целью - убедить всех своих противников в существовании процесса эволюции.

1.2 Теория эволюции Дарвина

Ученым, совершившим переворот в развитии эволюционной теории, является Чарльз Дарвин. Дарвин вывел новую концепцию эволюции. Дарвиновская концепция эволюции признает существование такой групповой изменчивости, которая приобретается организмами под действием определенных факторов, считает, что только случайные индивидуальные изменения, оказывающиеся полезными, могут передаваться по наследству и тем самым влиять на процесс дальнейшей эволюции.

Вот несколько слов Чарльза Дарвина в обоснование своей гипотезы естественного отбора: «Можно ли сомневаться, учитывая борьбу каждой особи за существование, что любое малое изменение в стремлении, привычках или инстинктах, способствующее лучшей приспособленности организма к новым условиям, скажется на его силе и благополучии. В борьбе за существование оно дает больше шансов выжить, и те потомки, которые унаследовали это изменение, пусть даже очень малое, имеют больше преимуществ. Ежегодно появляется больше потомков, чем их может выжить. В течение жизни поколения самый малый выигрыш в балансе укажет, кто должен погибнуть и кто выживет. Пусть такое действие отбора, с одной стороны, и гибель особей, с другой, продолжаются в течение тысяч поколений».(5)

Одним из важнейших аспектов теории Дарвина было ограничение полового отбора от других форм отбора. Дарвин отмечал, что у животных, имеющих два пола, существуют признаки, которые не способствуют выживанию особи и могут быть даже вредными для нее. В особенности это относится к самцам. Если самец имеет такое строение или поведение, способствующее спариванию с ним самки в присутствии конкурента, то этот признак дает ему преимущества перед конкурентом оставить больше потомства. Данный признак, по мнению Дарвина, будет развиваться, и совершенствоваться с течением времени, так как любые вариации, усиливающие его, дадут обладателю новые преимущества, и он оставит больше потомства, чем его менее удачливый соперник. В дальнейшем развитие признака прекращается лишь тогда, когда его половые преимущества точно уравновешиваются механическими, физиологическими и другими недостатками, или, по словам самого Дарвина, когда половой отбор уравновешивается равным ему и противоположным по направлению естественным отбором. Таким образом, Дарвин объяснил развитие многих вторичных половых признаков, таких, как красивые перья у райских птиц и хвостовые перья у павлина, наличие которых объяснить иначе невозможно.

В результате своих исследований Дарвин вывел основные принципы своей эволюционной теории:

1) Первый из них постулирует о том, что изменчивость является неотъемлемой частью всего живого.

В природе не существуют два совершенно одинаковых, тождественных организма. Мы все тщательнее и глубже изучаем природу и убеждаемся во всеобщем, универсальном характере изменчивости. Например, на первый взгляд может показаться, что все деревья в сосновом бору одинаковые, но более внимательное изучение может некоторые различия между ними. Одна из сосен дает более крупные семена, другая - в состоянии лучше переносить засуху, у третей - повышенное содержание хлорофилла в иголках и т. д. В определенных условиях это, незначительное, на первый взгляд, различие может стать тем решающим изменением, которое и определит, останется ли организм в живых или нет. Дарвин различает два типа изменчивости:

1) «индивидуальная» или «неопределенная» изменчивость, т.е. передающаяся по наследству;

2) «определенная» или «групповая» - подверженная той группе организмов, которые оказываются под воздействием определенного фактора внешней среды.

3) Второй принцип теории Дарвина состоит в раскрытии внутреннего противоречия в развитии живой природы. С одной стороны все виды организмов имеют тенденцию к размножению в геометрической прогрессии, а с другой - выживает и достигает зрелости лишь небольшая часть потомства.

Чарльз Дарвин характеризует этот принцип как «борьбу за существование». Под этим термином Дарвин подразумевает различные отношения между организмами, начиная от сотрудничества внутри вида против неблагоприятных условий окружающей среды, заканчивая конкуренцией между организмами.

4) Третьим принципом называется принципом естественного отбора, играющий фундаментальную роль во всех эволюционных теориях.

С помощью этого принципа Дарвин объясняет, почему из большого количества организмов выживают и развиваются лишь небольшое количество особей. Чарльз Дарвин писал: «Выражаясь метафорически, можно сказать, что естественный отбор ежедневно и ежечасно расследует по всему свету мельчайшие изменения, отбрасывая дурные, сохраняя и слагая хорошие, работая неслышно и невидимо, где бы и когда ни представился к тому случай, над усовершенствованием каждого органического существа в связи с условиями его жизни, органическими и неорганическими».

Самым слабым местом в теории Дарвина были его представления о наследственности. Неясным оставалось тот факт, каким образом изменения, связанные со случайным появлением полезных изменений могут сохраняться в потомстве и передаваться следующему поколению. Таким образом, теория Дарвина нуждалась в доработке и обосновании с учетом других биологических дисциплин, а в частности - генетики.

1.3 Исследования Грегори Менделя

Дарвин понимал, что для создания теории эволюции необходимо знание законов наследственности. Ко времени издания «Происхождения видов» Дарвина науке ничего не было известно о наследовании признаков. Согласно взглядам Дарвина на наследственность считалось, что некое вещество, образуемое каждым из родителей, необратимо смешивается в потомстве, что и определяет развитие определенных признаков у последующих поколений. Исходя из этого считалось, что внук имеет смешанную наследственность. Состоящую на одну четверть из вещества (или « крови»), полученного от деда и бабки.

И только Грегори Мендель заложил основы современной теории

наследственности, или как её называют сейчас, генетики.

1.3.1 Принципы менделеевской теории наследственности

Менделеевская наследственность объединяет пять основных принципов, два из которых он сформулировал в виде законов.

1) Наследственность дискретна, и за исключением половых хромосом, вклад каждого из родителей в свое потомство равноценен. Материал, определяющий наследственные свойства, передается потомству сперматозоидом и яйцеклеткой и не смешивается. Наследственный материал представляет собой набор дискретных частиц, называемый генами. Гены - это гигантские молекулы, определяющие своим строением и взаимодействием с другими аналогичными молекулами природу наследственных признаков.

2) Наследственные признаки не «загрязняют» друг друга. Гены, полученные потомством от родителей, составляют пары, причем таких пар в организме может быть тысячи. Гены передаются в том же виде, в котором они существовали у предков.

3) При скрещивании двух чистопородных организмов, различающихся по паре контрастирующих признаков, первое поколение, как правило, обладает признаками одного из родителей. Таким образом, исходные (дедовские) формы вновь выявляются во втором поколении или, как сейчас говорят, выщепляются. Это первый закон Менделеева подтверждающий вышеизложенное второе положение, называемый законом расщепления.

4) Если скрестить организмы, различающиеся по двум или большем числу пар контрастирующих признаков, то во втором поколении эти признаки распределяются совершенно независимо друг от друга. Это правило получило название закон независимого распределения.

5) Пятым принципом теории наследственности Менделя доказывалась исключительная стабильность генов. Гены редко претерпевают изменения (мутируют) с образованием разнообразных форм (мутантов). Эти изменения могут вызывать появление новых наследственных признаков. Из 50 000 тысяч половых клеток только одна из них будет нести мутационное изменение по какому-либо гену. Значительная часть половых клеток будет нести, по крайней мере, одну новую мутацию.

1.3.2 Доминантность наследственных признаков

Прежде чем говорить о доминантности, следует раскрыть следующие понятия: аллели, гомозиготы, гетерозиготы.

Гены, контролирующие наследственные свойства, заключены в хромосомах. Хромосомы парные, поэтому каждый ген в клетке представлен дважды, по одному в каждой хромосоме и в том же месте хромосомы. Гены, расположенные в одном и том же месте хромосомы называются аллеморфами (аллелями). Они могут быть одинаковыми, а могут различаться. Организм, имеющий пару одинаковых аллельных генов, называется гомозиготным. Организм, несущий два различных аллеморфа, называется гетерозиготным.

Мендель работал с двумя чистыми линиями гороха: одна из которых с зелеными семенами gg, а другая с желтыми GG. (gg - рецессивный признак зеленых семян, GG - доминантный признак желтых семян). По внешнему виду образуется два вида типа семян в отношении 3 желтых к 1 зеленому. Фенотипом называется совокупность признаков, которыми обладает организм, а генетический состав, определяющий эти признаки, называется генотипом. В менделеевском скрещивании имеется только два разных фенотипа во втором поколении в отношении 3 желтых к 1 зеленому, но три генотипа в отношении 1GG: 2Gg:1gg.

При скрещивании из двух чистых линий, различающих признаков, можно определить доминантность одного из признаков по расщеплению во втором поколении. Если один из признаков доминирует, то мы получим два фенотипа в отношении 3: 1, где особей с доминантным признаком большинство. Но при отсутствии доминантности будет расщепление в отношении 1: 2: 1, где большинство гетерозигот. В приведенной схеме 1 даны результаты возвратного скрещивания, где соотношение гетерозигот к гомозиготам равно 1: 1.

1.4 Эволюция полигенных систем

Гены, каждый из которых сам по себе дает незначительный кумулятивный эффект, а в сумме контролируют непрерывную изменчивость, называют полигенами. Особенно много занимался исследованиями в этой области английский ученый К. Мазер. Между генами с сильным действием (главными генами) и генами со слабым действием (полигенами) нет абсолютного различия, потому что гены могут вызывать также промежуточные эффекты. Кроме того, гены, оказывающие сильное действие на одни признаки, могут оказывать слабое действие на другие.

В любых условиях ненаправленные изменения признака лишь по случайности могут оказаться благоприятными. Современный уровень развития генетики показывает, что чем сильнее изменение, тем больше вероятность, что оно окажется вредным. Поэтому большинство эволюционных изменений должно быть вызвано накоплением многих изменений.

Исходя из того, что одни гены влияют на проявление других, в процессе отбора в организме вырабатывается сбалансированная система генов, называемая генным комплексом.

В одной и той же хромосоме находятся гены, контролирующие различные признаки. Поэтому при проведении опыта по отбору какого-либо признака отбирают не только новые комбинации полигенов, влияющих на этот признак, но также аллели других локусов, которые влияют на другие признаки, но расположены в другой хромосоме. Это означает то, что в прессе отбора изменяются не только те признаки, по которым ведут отбор, но также и другие.

«Несмотря на то, что отбор иногда бывает очень интенсивным, эволюция обычно протекает медленно. Это объясняется двумя обстоятельствами. Во-первых, организмы обычно хорошо приспособлены к среде в результате естественного отбора, так что любое изменение признаков большей части неблагоприятно. Во-вторых, если даже происходит такое изменение в среде, что выражение признака становится неоптимальным, любое его изменение будет затруднено вследствие нарушения всей сбалансированной системы полигенов.

После того как какой-либо признак изменится под действием отбора, то, прежде чем будет достигнут дальнейший прогресс, многие другие признаки также должны стать приспособленными».(1)

В процессе эволюции вырабатывается определенный генетический комплекс, обеспечивающий фенотипическую пластичность. Каждый признак развивается в результате взаимодействия среды и генотипа. Различные условия будут по-разному влиять на выражение признака, как, например, на вес семян или рост человека. Значит, будут отбираться те гены или генные комбинации, которые во взаимодействии с данными условиями дадут приспособленный фенотип. Таким образом, создается устойчивый генный комплекс, обеспечивающий приспособление к любым условиям среды, с которым может столкнуться организм и где еще не шел естественный отбор.

1.5 Генетический дрейф

Кроме естественного отбора, существует еще один фактор, который может способствовать повышению концентрации мутантного гена в популяции и даже полностью вытеснить его нормальный аллеломорф.

Биолог С. Райт исследовал этот случайный процесс (генетический дрейф) при помощи математических моделей и применил этот принцип к изучению проблем эволюции. При постоянных условиях генетический дрейф имеет решающее значение в очень маленьких популяциях, следовательно, популяция становится гомозиготной по многим генам и генетическая изменчивость уменьшается. Также он полагал, что вследствие дрейфа в популяции могут возникнуть признаки вредные наследственные признаки, в результате чего такая популяция может погибнуть и не внести свой вклад в эволюцию вида. С другой стороны, в очень больших популяциях решающим фактором является отбор, поэтому генетическая изменчивость в популяции снова будет незначительна. Популяция постепенно хорошо приспосабливается к условиям окружающей среды, но дальнейшие эволюционные изменения зависят от появления новых благоприятных мутаций. Такие мутации происходят медленно, поэтому эволюция в больших популяциях идет медленно. В популяциях промежуточной величины генетическая изменчивость повышена, новые выгодные комбинации генов образуются случайно, и эволюция идет быстрее, чем двух других описанных выше случаях популяциях.

Также следует помнить, что, когда один аллель теряется из популяции, он может вновь появиться только благодаря определенной мутации. Но в случае, если вид разделен на ряд популяций, в одних из которых потерян один аллель, а в других другой, то утерянный из данной популяции ген может появиться в ней благодаря миграции из другой популяции, где есть данный ген. Вот таким образом сохранится генетическая изменчивость. Исходя из этого Райт, предположил, что наиболее быстрые эволюционные изменения будут происходить у видов, подразделенных на многочисленные популяции различной величины, причем между популяциями возможна некоторая миграция.

Райт соглашался с тем, что естественный отбор - один из важнейших факторов эволюции, однако генетический дрейф, по его мнению, также является существенным фактором, определяющим длительные эволюционные изменения внутри вида, и что многие признаки, отличающие один вид от другого, возникли путем дрейфа генов и были безразличны или даже вредны по своему влиянию на жизнеспособность организмов.

По поводу теории генетического дрейфа разгорались споры между учеными - биологами. Например, Т. Добжанский считал, что не имеет смысла ставить вопрос, какой фактор играет большую роль - генетический дрейф или естественный отбор. Эти факторы взаимодействуют между собой. Возможны две ситуации:

1) Если в эволюции каких-либо видов главенствующее положение занимает отбор, то в этом случае будет наблюдаться или направленное изменение частот генов, или стабильное состояние, определяемое условиями окружающей среды.

2) Когда же на протяжении длительного периода времени более важен дрейф, то тогда направленные эволюционные изменения не будут связаны с природными условиями и даже возникшие незначительные неблагоприятные признаки могут широко распространиться в популяции.

В целом же генетический дрейф исследован еще недостаточно хорошо и определенного, единого мнения об этом факторе еще в науке не сложилось.

Заключение

Исследования в области генетики и экологии выявили ряд факторов, контролирующих выработку приспособлений и видообразование. Силы, лежащие в основе эволюции семейств, порядков и классов, не могут быть так легко определены.

Синтез генетики и эволюции в основном состоял во взаимодействии менделеевской теории наследственности и великой по своей научной значимости теории Дарвина.

На современном этапе развития генетики и эволюции все большее значение приобретает генная инженерия. Ученым удалось расшифровать структуру молекулы ДНК, что позволило создавать на базе известных видов новые, с заранее запрограммированными, не свойственными этому виду качествами. Серьезнейшей проблемой в практическом использовании генной инженерии является безопасность продуктов применения продуктов генной инженерии для существования Человечества. Наряду с этим выступает проблема клонирования, т.е. производства организмов абсолютно схожих по своей молекулярной структуре, а также измененной в соответствии с требованиями ученых. Клонирование влечет за собой множество морально- этических проблем, главной из которых является клонирование человека.

Словарь терминов

Аллели- гены, расположенные в одном и том же месте хромосомы.

Вид- совокупность живых организмов, населяющих определенную экологическую нишу, имеющая общность строения и физиологии и составляющая цельную генетическую систему.

Гаметы - женские и мужские половые клетки, обеспечивающие при слиянии развитие новой особи и передачу наследственных признаков от родителей к потомкам.

Гены - это гигантские молекулы, определяющие своим строением и взаимодействием с другими аналогичными молекулами природу наследственных признаков.

ДНК - (кратко) носитель определенной генетической информации, определенные участки, которой соответствуют определенным генам.

Локус - определенный участок на хромосоме.

Хромосома - структурный элемент ядра клетки, в котором заключена наследственная информация организма.

Список литературы

1. Шепард Ф.М. Естественный отбор и наследственность.- М.: Просвещение, 1970.

2. Киселева Э.А. Книга для чтения по дарвинизму. - М.: Просвещение, 1970.

3. Пузанов И.И. Жан Батист Ламарк.- М.: Просвещение, 1959.

4. Резник С. Раскрывшаяся тайна бытия. - М.: Знание, 1976.

5. Рузавин Г.И. Концепции современного естествознания. - М.: Юнити, 2000.

6. Основы экологии./ под ред. Обухова В.Л. и Сапунова В.Б.-С.-Пб: Специальная литература, 1998.

7. Таннери П. Исторический очерк развития естествознания в Европе. М., 1934.

8. Буркхардт Я. Культура Возрождения в Италии. Опыт исследования. М., 1996.

9. Цит. По: Амлинский И.Е. «Философия ботаники» Линнея: содержание и критический анализ//Идея развития в биологии. М., 1965.

10. Бэр К. Взгляд на развитие наук // Избранные произведения русских естествоиспытателей первой половины 19 века. М., 1959.

11. Ламарк Ж.Б. Аналитическая система положительных значений человека, полученная прямо или косвенно из наблюдений // Избранные произведения: В 2т. М.,1959. Т.2.

12. Шванн Т. Микроскопические исследования о соответствии в структуре и росте животных и растений. М.; Л., 1939.

13. Мендель Г., Ноден Ш., Сажрэ О. Избранные работы. М., 1968.

14.В.М. Найдыш. Концепция современного естествознания: Учебник .-Изд. 3-е, перераб. И доп.-М.: Альфа-М; ИНФРА-М, 2007.-704с.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.