бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Фотосинтез как основа энергетики биосферы

p align="left">Эти данные послужили основанием для представлений о включении в процесс фотосинтеза наряду с фотохимическими, световыми реакциями также темновых, энзиматических реакций, ограничивающее действие которых начинает проявляться особенно заметно при высоких, насьпдающих интенсивностях света. Результаты опытов А. А. Рихтера и Р. Эмерсона с прерывистым светом позволили оценить скорость световых и темновых реакций фотосинтеза: соответственно 10-5 и 10-2 с. Эти значения были полностью подтверждены в лаборатории Х.Витта (Witt, 1966) с использованием высокочувствительных методов импульсной спектрофотометрии.

При проведении физиологических исследований анализ световой кривой фотосинтеза дает информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций: чем он больше, тем активнее система использует энергию света. По углу наклона линейного участка можно вести приближенные расчеты расхода квантов на восстановление моля С02. Скорость фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С02 и в значительной мере определяется концентрацией углекислоты в среде. Чем выше расположена кривая в области насыщающих интенсивностей света, тем более мощным аппаратом поглощения и восстановления углекислоты обладает система.

Минимальная интенсивность света, при которой возможен фотосинтез, различна у разных групп растений. Определенное практическое значение имеет световой компенсационный пункт (СКП) -- уровень освещения, когда интенсивности газообмена в процессах фотосинтеза и дыхания равны. Только при интенсивности света свыше СКП устанавливается положительный баланс углерода. Положение светового компенсационного пункта определяется генотипом растения и зависит от соотношения фотосинтеза и темнового дыхания. Любое усиление темнового дыхания, например при повышении температуры, увеличивает значение СКП. У С4-растений световой компенсационный пункт расположен выше, чем у С3-растений, у теневыносливых растений он ниже, чем у светолюбивых.

Повышение интенсивности света до определенного уровня действует в первую очередь на фотохимические реакции хлоропластов. При освещении сначала включается нециклический транспорт электронов. По мере увеличения скорости электронного потока и насыщения электронных пулов часть электронов переключается на образование циклических потоков. Переключение связано с восстановлением переносчиков, занимающих ключевое положение в ЭТЦ (к ним относятся пул пластохинонов, ферредоксин), и изменением конформации редокс-агентов. В условиях избыточной освещенности циклический транспорт электронов может играть защититную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и таким образом способствовать активации процессов ассимиляции углерода в хлоропластах и адаптационных процессов в растении.

При увеличении интенсивности светового потока и скорости транспорта электронов возрастает активность фотовосстановления НАДФ+ и синтеза АТФ. Скорость образования восстановленных коферментов активируется в большей степени, чем синтез АТФ, что приводит к некоторому снижению отношения АТФ/НАДФН при увеличении интенсивности света. Изменение соотношения энергетического и восстановительного потенциалов является одним из факторов, определяющих зависимость от интенсивности освещения характера метаболизма углерода и соотношение продуктов фотосинтеза. При низком уровне освещения (около 2000 люкс) образуются главным образом вещества неуглеводной природы (аминокислоты, органические кислоты), при высокой интенсивности света главную часть конечных продуктов фотосинтеза составляют углеводы (сахароза и др.). Интенсивность освещения определяет характер формирующихся фотосинтезируюших структур. В условиях интенсивного освещения формируется большое число более мелких фотосинтетических единиц что характерно для высокоактивных систем, увеличивается отношение хлорофиллов а/b.

С3- и С4-группы растений существенно различаются по зависимости процесса фотосинтеза от интенсивности света. Сравнение хода кривых показывает, что высокий уровень фотосинтеза, свойственный С4-растениям, проявляется главным образом при высоких уровнях освещенности.

Спектральный состав света. Помимо интенсивности существенное значение для фотосинтеза имеет спектральный состав света. Основные закономерности действия на фотосинтез лучей разных длин волн были установлены К. А. Тимирязевым. Дальнейшие исследования показали, что интенсивность фотосинтеза в участках спектра, выровненных по количеству энергии, различна: наиболее высокая интенсивность фотосинтеза отмечена в красных лучах (O.Warburg, Е.Negelein, 1923; Е.Gabrielsen, 1935, и др.).

Спектр действия фотосинтеза (кривая его зависимости от длины волны падающего света) при выровненном числе квантов имеет два четко выраженных максимума -- в красной и синей части спектра, аналогичных максимумам поглощения хлорофилла. Следовательно, красные и синие лучи наиболее эффективны в фотосинтезе. Анализ кривой квантового выхода фотосинтеза в зависимости от длины волны показывает, что он имеет близкие значения в диапазоне длин волн 580 -- 680 нм (около 0,11). В сине-фиолетовой части спектра (400 -- 490 нм), поглощаемой наряду с хлорофиллами также и каротиноидами, квантовый выход снижается (до 0,06), что связывают с менее продуктивным использованием энергии, поглощаемой каротиноидами. В дальней красной области спектра (более 680 нм) наблюдается резкое снижение квантового выхода. Явление «красного падения» фотосинтеза и последующие опыты Р. Эмерсона, показавшие усиление фотосинтеза при дополнительном освещении коротковолновым светом («эффект усиления»), привели к одному из фундаментальных положений современного фотосинтеза о последовательном функционировании двух фотосистем.

Качество света, как показали многолетние исследования Н.П.Воскресенской (1965--1989), оказывает сложное и разностороннее влияние на фотосинтез. Синий свет по сравнению с красным (выравненный по числу квантов) оказывает специфическое действие на фотосинтетический аппарат растений. На синем свету более активна общая ассимиляция С02, что обусловлено активирующим действием синего света на процессы электронного транспорта и на реакции углеродного цикла. В системе, где донором электронов служила вода, синий свет повышал активность фотовосстановления НАДФ+ почти в два раза по сравнению с активностью этой реакции у растений на красном свету. Спектральный состав света определяет состав продуктов, синтезируемых при фотосинтезе: на синем свету преимущественно синтезируются органические кислоты и аминокислоты, а позднее -- белки, тогда как красный свет индуцировал синтез растворимых углеводов, а со временем -- крахмала. Отмечено регулирующее действие синего света на активность ферментов фотосинтетического превращения углерода. У растений, выращенных на синем свету, обнаружена более высокая активность РуБФ-карбоксилазы, глицеральдегидфосфатдегидрогеназы, гликолатоксидазы, глиоксилатаминотрансферазы. Отмеченные в работе изменения активности ферментов связаны с активирующим действием синего света на синтез белков de novo. Вопрос о природе фоторецепторов синего света остается неясным. В качестве возможных акцепторов предполагаются флавины, каротиноиды, фитохромная система.

Влияние концентрации углекислоты на фотосинтез

Углекислый газ воздуха является субстратом фотосинтеза. Доступность С02 и его концентрация определяют активность углеродного метаболизма растений. В воздухе концентрация С02 составляет 0,03 %. Вместе с тем установлено, что максимальная скорость фотосинтеза достигается при концентрации углекислого газа на порядок выше (около 0,3 -- 0,5 %). Таким образом, концентрация С02 -- один из ограничивающих факторов фотосинтеза. Лимитирующее действие концентрации углекислого газа особенно проявляется при высоких интенсивностях света, когда фотохимические реакции производят максимально возможное количество НАДФН и АТФ, необходимых для метаболизма углерода в растении.

Как видно из рис, зависимость интенсивности фотосинтеза от концентрации С02 имеет логарифмический характер. Увеличение концентрации С02 приводит к быстрому увеличению интенсивности фотосинтеза. При концентрации С02 0,06--0,15 % у большинства растений достигается насыщение фотосинтеза. Увеличение интенсивности фотосинтеза при повышении концентрации С02 обусловлено реализацией в этих условиях потенциальной карбоксилазной активности Рубиско и созданием в хлоропластах большого пула акцептора С02 -- рибулозобисфосфата.

Увеличение концентрации С02 одновременно с повышением интенсивности света приводит к сдвигу насыщающей концентрации С02 в область еще больших концентраций (вплоть до 0,5%) и к значительному увеличению ассимиляции углерода растениями. Однако длительное выдерживание растений при высоких концентрациях углекислого газа может привести к «перекорму» растений и ингибированию фотосинтеза.

Концентрация углекислоты, при которой поглощение углекислого газа при фотосинтезе уравновешивает выделение его в ходе дыхания (темнового и светового), называется углекислотным компенсационным пунктом (УКП). У разных видов растений положение УКП может существенно различаться. Особенно выражены различия между С3- и С4-растениями. Так, у С3-растений УКП находится при довольно высоких концентрациях С02 (около 0,005 %), что связано с наличием активного фотодыхания у этой группы растений. С4-растения, обладающие способностью фиксировать С02 через фермент ФЕП-карбоксилазу, производят рефиксацию углекислого газа при слабом фотодыхании. Поэтому у С4-растений УКП приближается к нулевой концентрации С02 (ниже 0,0005 % С02). При увеличении концентрации С02 выше компенсационного пункта интенсивность фотосинтеза быстро возрастает.

В естественных условиях концентрация С02 довольно низка (0,03 %, или 300 мкл/л), поэтому диффузия С02 из атмосферы во внутренние воздушные полости листа очень затруднена. В этих условиях низких концентраций углекислоты существенная роль в процессе ее ассимиляции при фотосинтезе принадлежит ферменту карбоангидразе, значительная активность которой обнаружена у С3-растений. Карбоангидраза способствует повышению концентрации С02 в хлоропластах, что обеспечивает более активную работу РуБФ-карбоксилазы.

Карбоксилирующий потенциал РуБФ-карбоксилазы существенно изменяется в зависимости от концентрации С02. Как правило, максимальная активность РуБФ-карбоксилазы достигается при концентрациях С02, значительно превышающих содержание ее в атмосфере. Анализ кинетики фотосинтеза в листьях в зависимости от концентрации С02 показал, что при одних и тех же концентрациях углекислоты активность РуБФ-карбоксилазы значительно выше, чем интенсивность фотосинтеза. Это обусловлено лимитирующим действием на фотосинтез ряда факторов: сопротивления диффузии С02 через устьица и водную фазу, активности фотодыхания и фотохимических процессов. У С4-растений ФЕП-карбоксилаза, использующая в качестве субстрата HCO3-, при насыщающих концентрациях субстратов (HCO3-, ФЕП) характеризуется высокими значениями vmax, достигающими 800-- 1200 мкмоль.мг Хл-1ч-1, что значительно превышает скорость фотосинтеза в листьях (Дж. Эдварде, Д.Уокер, 1986).

Низкая концентрация углекислоты в атмосфере часто является фактором, ограничивающим фотосинтез, особенно при высокой температуре и в условиях водного дефицита, когда уменьшается растворимость С02 и возрастает устьичное сопротивление
(P.Gaastra, 1959). Повышение концентрации С02 от 0,03 до 0,1 --0,5 % приводит обычно к резкому увеличению интенсивности фотосинтеза (в 3 -- 5 раз). Однако при длительном воздействии на
растение высоких концентраций С02 после временной активации фотосинтеза наступает его торможение вследствие разбаланса донорно-акцепторных систем. Происходящие вслед за этим морфо-генетические изменения, связанные с активирующим действием С02 на ростовые процессы, восстанавливают функциональные донорно-акцепторные взаимодействия. С02 оказывает регуляторное действие на ростовую функцию. Выдерживание растений при высоких концентрациях С02 сопровождается увеличением площади листьев, стимуляцией роста побегов 2-го порядка, возрастанием доли корней и запасающих органов, усилением клубнеобразования. Прирост биомассы при подкормке С02 происходит адекватно приросту площади листьев. В результате повышение концентрации С02 в атмосфере приводит к увеличению биомассы растения. Известным приемом повышения интенсивности и продуктивности фотосинтеза служит увеличение концентрации С02 в теплицах. Этот метод позволяет повысить прирост сухого вещества более чем в 2 раза.

Изменение содержания углекислоты влияет на состав конечных продуктов фотосинтеза. При высокой концентрации 14С02 меченый углерод включается преимущественно в сахара, при низкой -- в аминокислоты (серии, глицин).

Следует отметить также регуляторное действие углекислоты на первичные процессы фотосинтеза. Работами последних лет показано, что С02 регулирует скорость транспорта электронов на уровне фотосистемы II. Центры связывания углекислоты находятся на белке D1 вблизи QB. Следовые количества С02, связанные в этих центрах, изменяя конформацию белка, обеспечивают высокую активность электронного транспорта в ЭТЦ на участке между ФС II и ФСI.

Структурная организация листа, свойства его поверхности, число и степень открытости устьиц, а также градиент концентрации углекислого газа определяют возможность поступления углекислого газа к карбоксилирующим ферментам. Основными параметрами, определяющими диффузию углекислого газа к хлоропластам, являются сопротивление пограничной поверхности листа, устьиц и клеток мезофилла. Сопротивление пограничных поверхностей прямо пропорционально площади поверхности листа и обратно пропорционально скорости ветра. Вклад сопротивления пограничных поверхностей относительно невелик (около 8 -- 9 % от общего сопротивления листа диффузии С02). Сопротивление устьиц примерно в 10 раз больше, чем сопротивление пограничных поверхностей. Оно прямо пропорционально глубине устьиц и обратно пропорционально числу устьиц и размеру устьичных щелей. Все факторы, способствующие открыванию устьиц, будут снижать устьичное сопротивление. При расчете сопротивления устьиц учитывается также коэффициент диффузии С02. Его увеличение приводит к снижению сопротивления устьиц. Сопротивление мезофилла определяется диффузионными процессами, связанными с концентрационными градиентами углекислоты в отдельных структурах листа, сопротивлением клеточных стенок, скоростью движения цитоплазмы, активностью и кинетическими характеристиками карбоксилирующих ферментов и др.

Влияние кислорода на процесс фотосинтеза

Зависимость фотосинтеза от концентрации кислорода в среде довольно сложна. Как правило, процесс фотосинтеза высших растений осуществляется в аэробных условиях при концентрации кислорода около 21 %. Исследования показали, что как увеличение концентрации кислорода, так и отсутствие его неблагоприятны для фотосинтеза.

Действие кислорода зависит от его концентрации, вида и физиологического состояния растения, других условий внешней среды. Обычная концентрация кислорода в атмосфере (21 %) не является оптимальной, а значительно превышает последнюю. Поэтому снижение парциального давления кислорода до 3 % практически не сказывается отрицательно на фотосинтезе, а в ряде случаев может даже активировать его. У растений различных видов снижение концентрации кислорода вызывает неодинаковый эффект. Так, по данным А.А Ничипоровича (1973), уменьшение концентрации кислорода от 21 до 3 % сказывалось благоприятно на растениях с активным фотодыханием (бобы). Для кукурузы, у которой фотодыхание почти отсутствует, не отмечено изменений в интенсивности фотосинтеза при переходе от 21 до 3 % 02.

Неоднозначное и часто противоположное влияние разных концентраций кислорода на фотосинтез обусловлено тем, что конечный эффект зависит от направленности действия нескольких механизмов. Известно, что присутствие кислорода необходимо для
нормального функционирования электрон-транспортной цепи. Ряд
компонентов ЭТЦ (ферредоксин, хиноны) могут взаимодействовать с 02, регулируя таким образом редокс-состояние цепи. При активном потоке электронов влияние кислорода положительно, так как «разгружает» цепь. Этот механизм имеет положительное значение также в том случае, когда нарушена регенерация НАДФ+. Возможность сброса электронов на 02 обеспечивает функционирование ЭТЦ и запасание энергии в реакциях псевдоциклического фотофосфорилирования. Вместе с тем сброс электронов ЭТЦ на кислород приводит к образованию активных форм кислорода (АФК), которые могут вызывать нарушения фотосинтезирующих структур и ингибировать фотосинтез. При слабом электронном
потоке кислород, конкурируя за электроны, также снижает эффективность работы ЭТЦ.

Другим достаточно хорошо изученным механизмом действия кислорода на фотосинтез является его влияние на ключевой фермент фотосинтеза -- РуБФ-карбоксилазу. Хорошо установлено ингибирующее действие высоких концентраций 02 на карбоксилазную функцию фермента и активирующее действие на его оксигеназную функцию (на скорость фотодыхания). В зависимости от концентрации С02 в среде ингибирующее действие высоких концентраций кислорода на фотосинтез может проявиться в большей или меньшей степени. Этот механизм лежит в основе явления, известного как «эффект Варбурга». В 1920 г. Варбург впервые обнаружил ингибирующее действие высоких концентраций кислорода на фотосинтез водоросли Chlorella. Эффект Варбурга отмечен для многих видов высших растений (O.Bjorkman, 1966), а также при исследовании фиксации С02 изолированными хлоропластами (R.Everson, M.Gibbs, 1967). Кислородное ингибирование фотосинтеза, по мнению многих исследователей, обусловлено двумя составляющими -- прямым ингибированием РуБФ-карбоксилазы за счет высоких концентраций 02 и активацией процесса фотодыхания. При повышении концентрации С02 в атмосфере степень кислородного ингибирования фотосинтеза существенно снижается.

Эффект Варбурга проявляется не у всех растений, у ряда растений аридных пустынь обнаружен «антиэффект Варбурга» -- подавление фотосинтеза низкими концентрациями кислорода (1 % О2) (А. Т. Мокроносов, 1981, 1983). Исследования показали, что положительное или отрицательное влияние 02 на фотосинтез зависит от соотношения в листе фототрофных и гетеротрофных тканей. У растений, где фототрофные ткани составляют большую часть объема листа, при низком содержании кислорода проявляется усиление фотосинтеза. У растений, содержащих большую долю гетеротрофных тканей, в этих условиях проявляется «антиэффект Варбурга» -- подавление фотосинтеза в бескислородной среде. Это противоположное действие низких концентраций кислорода обусловлено сложным взаимодействием фотосинтеза, фотодыхания и темнового дыхания в клетках листа разного типа (фототрофных, гетеротрофных).

У С3-растений при естественном соотношении 02 и С02 (21 и 0,03 %) доля фотодыхания составляет 20 -- 30% от скорости фотосинтетического карбоксилирования.

Влияние температуры на фотосинтез

Интегральный ответ фотосинтетического аппарата на изменения температуры, как правило, может быть представлен одновершинной кривой. Вершина кривой зависимости фотосинтеза от температуры находится в области оптимальных для фотосинтеза температур. У разных групп высших растений максимальная скорость фотосинтеза соответствует различным значениям температур, что определяется адаптацией фотосинтетического аппарата к различным пределам температур. Так, для большинства С3-растений умеренной зоны произрастания оптимальная для фотосинтеза температура находится в интервале 20--25 °С. У растений с С4-путем фотосинтеза и с САМ-фотосинтезом температурный оптимум приходится на 30--35°С. Для одного и того же вида растения температурный оптимум фотосинтеза непостоянен. Он зависит от возраста растения, адаптации к определенным условиям температур и может изменяться в течение сезона. К Нижний предел температур, при которых еще наблюдается фотосинтез, колеблется от -15 (сосна, ель) до +3 °С; у большинства высших растений фотосинтез прекращается приблизительно при 0о.

Анализ кривой зависимости фотосинтеза от температуры показывает быстрое возрастание скорости фотосинтеза при повышении температуры от минимальной к оптимальной (Q10 = 2). Дальнейшее повышение температуры сверхоптимальной ведет к быстрому ингибированию процесса. Верхний предел температуры для поглощения С02 для большинства С3-растений находится в области 40--50 °С, для С4-растений -- при 50 --60 °С.

Зависимость фотосинтеза от температуры изучена на разных уровнях организации фотосинтезирующих систем. Наиболее термозависимыми в растении являются реакции углеродных циклов. Снижение интенсивности фотосинтеза в области сверхоптимальных температур объясняют снижением тургора в листьях и закрыванием устьиц в этих условиях, что затрудняет поступление углекислого газа к центрам его фиксации. Кроме того, при повышении температуры снижается растворимость С02, увеличивается отношение растворимостей 02/С02 и степень кислородного ингибирования, изменяются кинетические константы карбоксилирующих ферментов. Реакции транспорта электронов и синтеза АТФ, будучи по своей природе ферментативными процессами, также весьма чувствительны к температуре. Первичные же реакции фотосинтеза, связанные с поглощением света, миграцией энергии возбуждения и разделением зарядов в реакционных центрах, практически не зависят от температуры.

Влияние водного режима на фотосинтез

Значение водного режима для фотосинтеза определяется в первую очередь действием воды на состояние устьиц листа: до тех пор пока устьица остаются оптимально открытыми, интенсивность фотосинтеза не изменяется под влиянием колебаний водного баланса. Частичное или полное закрывание устьиц, вызванное дефицитом воды в растении, приводит к нарушению газообмена и снижению поступления углекислого газа к карбоксилирующим системам листа. Вместе с тем водный дефицит вызывает снижение активности ферментов ВПФ цикла, обеспечивающих регенерацию рибулозобисфосфата, и значительное ингибирование фотофосфорилирования. В результате в условиях водного дефицита наблюдается ингибирование фотосинтетической активности растений. Длительное действие дефицита воды может привести к снижению общей фотосинтетической продуктивности растений, в том числе и за счет уменьшения величины листьев, а значительное обезвоживание растений может в итоге вызвать нарушение структуры хлоропластов и полную потерю их фотосинтетической активности.

Различные стадии фотосинтеза в разной степени чувствительны к снижению содержания воды в тканях листа. Наиболее лабильны и быстрее всего ингибируются в условиях водного дефицита реакции фотофосфорилирования (при водном потенциале 11 бар), что обусловлено нарушением ультраструктуры сопрягающих мембран и разобщением транспорта электронов и фосфорилирования (R.Keck, Р. Воуеr, 1974). Транспорт электронов в целом более устойчив к обезвоживанию, однако потеря воды приводит к изменению конформационной лабильности мембранных белков и снижению скорости электронного потока. При дегидратации системы образуется жесткая матрица, в которой подвижность компонентов ЭТЦ понижена.

Высокочувствительны к обезвоживанию ферментативные реакции углеродных циклов. При низком водном потенциале значительно снижается активность ключевых ферментов -- РуБФ-карбоксилазы и глицеральдегидфосфатдегидрогеназы (W. Stewart, Lee, 1972; O.Bjorkman et al., 1980).

Фотосинтез в условиях светового, водного и температурного стресса. Адаптивные системы фотосинтеза

Напряженность любого внешнего фактора, выходящая за пределы нормы реакции генотипа, создает условия экологического стресса. Наиболее часто факторами экологического стресса для
наземных растений являются высокие интенсивности света, водный дефицит и предельные температуры.

В ряде работ исследовано влияние экстремальных условий освещения на активность фотосинтетического аппарата. Световое насыщение фотосинтеза у большинства растений находится в пределах 100--300тыс. эрг/см2*с; дальнейшее повышение интенсивности света может приводить к снижению скорости фотосинтеза. У теневыносливых растений световое насыщение достигается при значительно более низком освещении.

Обычно растения хорошо адаптированы к световому режиму местообитания. Адаптация достигается путем изменения количества и соотношения пигментов, размеров антенного комплекса, количества карбоксилирующих ферментов и компонентов электрон-транспортной цепи (О. Bjorkman, 1981). Так, у теневыносливых растений обычно ниже световой компенсационный пункт, больше размеры ФСБ и выше (3:1) отношение ФС И/ФС I (D. Fork, R. Govindjee, 1980). При резком изменении светового режима у растений, адаптированных к иным условиям освещения, происходит ряд нарушений в работе фотосинтетического аппарата. В условиях чрезмерно высокого освещения (более 300--400 тыс. эрг/см2с) резко нарушается биосинтез пигментов, ингибируются фотосинтетические реакции и ростовые процессы, что приводит в итоге к снижению общей продуктивности растений. В опытах с использованием мощных лазерных источников света показано (Т. Е. Кренделева и др., 1972), что световые импульсы, поглощаемые ФС I, значительно изменяют ряд фотохимических реакций: снижаются содержание П700, скорость восстановления акцепторов I класса (НАДФ+, феррицианид), скорость фотофосфорилирования. Действие лазерного облучения значительно уменьшает величину отношения Р/2е- и амплитуду быстрой компоненты фотоиндуцированного изменения поглощения при 520 нм. Авторы считают, что отмеченные выше изменения являются следствием необратимого повреждения реакционных центров ФС I.

Механизмы адаптации к различным интенсивностям света включают процессы, контролирующие распределение, использование и диссипацию поглощенной световой энергии. Эти системы обеспечивают эффективное поглощение энергии при низких уровнях освещения и сброс избыточной энергии при высокой освещенности. К ним относится процесс обратимого фосфорилирования белков светособирающих комплексов II (состояния 1 и 2), который контролирует относительное поперечное сечение поглощающих систем ФСI и ФС II. Защитные механизмы против фотоингибирования при высокой интенсивности света включают активируемые светом электрон-транспортные и сопряженные с ними эффекты (формирование циклических потоков вокруг ФС I и ФС II, виолаксантиновый цикл и др.), а также процессы дезактивации возбужденных состояний хлорофилла (A.Horton et al., 1989; Н.Г.Бу-хов, 2004).

Влияние водного дефицита на фотосинтез проявляется, прежде всего, в нарушении газообмена. Недостаток водоснабжения приводит к закрыванию устьиц, связанному с изменением содержания абсцизовой кислоты (АБК). Водный дефицит уже на уровне 1 -- 5 бар служит сигналом к быстрому увеличению количества АБК в листьях. В зависимости от генотипической устойчивости вида к засухе содержание АБК при потере воды в листьях возрастает от 20 до 100--200 раз, вызывая закрывание устьиц.

Устьичный аппарат регулирует поступление С02 в воздушные полости листа. Изменение ширины устьичной щели в зависимости от водного потенциала у разных видов высших растений определяется степенью их засухоустойчивости. В условиях водного дефицита, при закрывании устьичных отверстий, подавляется процесс фотосинтеза, ближний и дальний транспорт ассимилятов и снижается общий уровень продуктивности растений. При слабом водном дефиците отмечена временная активация фотосинтеза, дальнейшее увеличение дефицита воды приводит к значительным нарушениям активности фотосинтетического аппарата.

У растений С3- и С4-групп соотношение между фотосинтетической продуктивностью и водным балансом значительно различается. Для С4-растений характерно более экономное использование воды. Коэффициент транспирации, выражающий отношение количества транспирированной воды (в литрах), при образовании 1 кг сухого вещества у С4-растений значительно ниже: 250-350 л воды на 1 кг сухого вещества, у С3-растений - 600 -800. Последнее связано с функционированием у С4-растений специальных адаптивных механизмов, к числу которых относятся:

1. Кинетические свойства карбоксилирующих ферментов -- высокое сродство ФЕП-карбоксил азы к С02, а также более высокая ее удельная активность (в расчете на белок). Активность ФЕП-карбокеилазы (25 мкмольмг-1 мин-1) в 5--10 раз больше активности РуБФ-карбоксилазы (2 мкмоль*мг-1*мин-1). Это позволяет С4-растениям более эффективно осуществлять процесс фотосинтеза при слабо открытых устьицах.

2. Характерные для С4-растений более низкие значения сопротивления мезофилла диффузии С02 и более высокое сопротивление устьиц диффузии водяных паров. Последнее связано с меньшим числом устьиц на единицу поверхности листа и с меньшей величиной устьичных щелей.|

Эти анатомо-биохимические особенности С4-растений обеспечивают более высокую эффективность использования воды по сравнению с С3-растениями.

При закрывании устьиц концентрация С02 в хлоропластах снижается до компенсационного пункта, что нарушает процессы ассимиляции С02 и работу углеродных циклов. У С3-растений в этих условиях вследствие процесса фотодыхания продолжается функционирование электрон-транспортной цепи и потребление образующихся НАДФН и АТФ. Это отчасти защищает фотосинтетический аппарат С3-растений от фотоингибирования, которое вызывается избытком энергии при ограниченном снабжении С02 и интенсивном освещении. У С4-растений механизм, предохраняющий фотосинтетический аппарат от фотоповреждения, связан с транспортом углерода из клеток мезофилла в клетки обкладки. Способность к рециклизации С02 является одним из путей адаптации фотосинтетического аппарата к нарушению газообмена при водном дефиците.

Однако несмотря на эти защитные механизмы, в условиях водного стресса при интенсивном освещении происходит ингибирование транспорта электронов, процессов ассимиляции С02, снижение квантового выхода фотосинтеза.

В условиях обезвоживания ткани листа, по-видимому, не происходит синхронного обезвоживания хлоропластов. Как показывают электронно-микроскопические исследования, хлоропласт сохраняет свою нативную структуру даже при значительном водном дефиците в листе. Полагают, что хлоропласт может поддерживать водный гомеостаз даже при значительной потере воды растением. Однако при значительном водном дефиците происходит набухание хлоропластов и нарушение их тилакоидной структуры. Увеличение содержания АБК вследствие водного дефицита вызывает синхронное системное ингибирование функций фотосинтеза и роста. Нарушается система репликации, транскрипции I и трансляции, контролируемая генами ядра и хлоропласта, происходит деструкция полисом, нарушается деление и структурно- функциональная дифференцировка клеток и хлоропластов, блокируются процессы роста и морфогенез. В этих условиях резко подавляются энергетические процессы. И.А.Тарчевский (1982) предполагает, что блок АБК связан с нарушением функции сопрягающих мембран и ингибированием фотофосфорилирования, результатом чего является дефицит АТФ.

В природных условиях водный стресс часто сопряжен с температурным стрессом. Специфика организации фотосинтетического аппарата, анатомические и биохимические особенности отдельных групп растений, их адаптация к температурным условиям окружающей среды определяют различные интервалы температур, благоприятные для протекания фотосинтеза. Неодинаковую зависимость от температурных условий проявляют С3- и С4-группы растений. Температурный оптимум фотосинтеза у С4 растений находится в области более высоких температур (35 --45 °С), чем у С3-растений (20 -- 30 °С). Это обусловлено спецификой организации биохимических систем ассимиляции С02 у С4-растений и рядом адаптивных механизмов. За счет работы С4-цикла концентрация С02 в хлоропластах поддерживается на достаточно высоком уровне, что предотвращает кислородное ингибирование фотосинтеза и обеспечивает его высокую интенсивность в широком интервале температур. Ферментативный аппарат хлоропластов С4 -растений более активен при повышении температуры до 35 °С, в то время как у С3-растений при этих температурах отмечено ингибирование фотосинтеза.

Наиболее термозависимыми являются реакции углеродных циклов, для которых характерны высокие значения Q10: 2,0--2,5. Активность НАДФ-малатдегидрогеназы (маликоэнзим) в клетках обкладки у С4-растений значительно возрастает при повышении температуры до 39 °С за счет увеличения сродства фермента к субстрату. При этом увеличиваются активность декарбоксилирования малата, скорость его транспорта из клеток мезофилла в клетки обкладки, активируются карбоксилирующие системы (ФЕП-карбоксилаза) вследствие уменьшения ингибирующего действия малата как конечного продукта. Благодаря этому общая интенсивность фотосинтеза при высоких температурах у С4-растений выше, чем у Сз-растений.

Высокой степенью термочувствительности отличаются также реакции электронного транспорта. Все фотофизические и фотохимические реакции, протекающие в реакционных центрах, мало зависят от температуры, однако процессы переноса электронов между функциональными комплексами являются термозависимыми. Фотосистема II и сопряженные с нею реакции фотоокисления воды легко повреждаются при экстремальных температурах; фотосистема I более термостабильна.

Весьма чувствительны к температуре процессы фотосинтетического фосфорилирования. Наиболее благоприятен интервал температур 15--25 °С. У большинства высших растений повышение температуры выше 30--35° резко ингибирует реакции фотофосфорилирования, фотопоглощения протонов и активность каталитических центров CF. По-видимому, ингибирующее действие высоких температур на систему сопряжения связано с нарушением характера конформационных изменений, с изменением конформационных свойств белка. Повышение температуры искажает также нормальное функционирование сопрягающих мембран.

Высокая термоустойчивость фотосинтетического аппарата ряда сортов и видов растений связана со спецификой липидного состава мембран, физико-химических свойств мембранных белков, кинетическими свойствами ферментов пластид и рядом структурно-функциональных особенностей тилакоидных мембран. Одним из наиболее существенных факторов, определяющих устойчивость растений в стрессовых условиях, являются стабильность их энергетических систем и общий уровень энергообмена. Фонд АТФ обеспечивает восстановление нарушенных физиологических состояний, новообразование клеточных структур и нормализацию всего конструктивного обмена (В.Е.Петров, Н.Л.Лосева, 1986).

Зависимость фотосинтеза от засухи и температуры на уровне целого растительного организма оказывается еще более сложной, так как засуха в первую очередь тормозит ростовые процессы (деление и дифференцировку клеток, морфогенез). Это приводит к уменьшению «запроса» на ассимиляты со стороны морфогенеза, т. е. нарушается акцепторная функция в донорно-акцепторной системе, что вызывает торможение фотосинтеза через метаболитное и гормональное ингибирование.

Создание сортов сельскохозяйственных растений, сочетающих высокую термоустойчивость, засухоустойчивость и высокий уровень зерновой продуктивности является одной из важнейших проблем современной физиологической генетики и селекции.

В последние годы большое значение уделяется изучению действия на фотосинтез ряда техногенных экологических факторов, таких, как радиационное загрязнение, физические поля (электромагнитный «смог»), экология мегаполисов и др. В связи с этим возникает необходимость на новой молекулярно-генетической и физической основе расшифровать последовательность всех этапов адаптации основных реакций фотосинтеза ко всем видам природных и техногенных факторов.

Список литературы

1. Андреева Т.Ф. Фотосинтез и азотный обмен листьев.- М: Наука, 1969

2. Клейтон Р. Фотосинтез. Физические механизмы и химические модели. - М., 1984.

3. Кретович В.Л. Биохимия растений. М., 1986

4. Овчинников Н.Н. Фотосинтез. - М: Просвещение, 1972.

5. Полевой В.В. Физиология растений. - М.: “Высшая школа”, 1989

6. Рабинович Е. Фотосинтез. - М: Издательство иностранной литературы, 1959

7. Судьина Е.Г. Фотосинтез - основа жизни. - Киев: Издательство академии наук украинской ССР, 1962

8. Якушкина Н.И. Физиология растений.- М.: Просвещение, 1993.

Страницы: 1, 2, 3, 4, 5


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.