бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Строение и функции органелл клетки. Законы Г. Менделя

p align="left">Профилактика связана с уничтожением мест обитания малярийного комара.

Общие закономерности филогенеза кровеносной системы позвоночных животных. Филогенез систем органов хордовых

Филогенез систем органов хордовых рассмотрен в соответствии с прогрессивным направлением эволюции этого типа животных от подтипа Бесчерепные до класса Млекопитающие. Организация систем органов класса Птицы не описана в связи с тем, что птицы произошли от пресмыкающихся значительно позже млекопитающих и являются боковой ветвью эволюции хордовых.

Необходимым условием существования высокоорганизованных крупных многоклеточных организмов является наличие жидкой подвижной внутренней среды, которая обеспечивает интеграцию организма в целостную систему, выполняя транспортные функции. Эти функции являются основными для кровеносной системы. Конкретная функция кровеносной системы зависит от того, что она транспортирует: питательные вещества, кислород, углекислый газ, другие продукты диссимиляции или гормоны. Кровеносная система всех хордовых замкнутая и состоит из двух основных артериальных сосудов: брюшной и спинной аорт. По брюшной аорте венозная кровь продвигается кпереди, обогащается кислородом в органах дыхания, а по спинной - кзади. Из спинной аорты кровь через систему капилляров возвращается по венам в брюшную аорту. Брюшная аорта или ее часть, периодически сокращаясь, проталкивает кровь по сосудам.

Эволюция общего плана строения кровеносной системы хордовых

У ланцетника (кровеносная система наиболее проста. Круг кровообращения один. По брюшной аорте венозная кровь поступает в приносящие жаберные артерии, которые по количеству соответствуют числу межжаберных перегородок (до 150 пар), где и обогащается кислородом.

По выносящим жаберным артериям кровь поступает в корни спинной аорты, расположенные симметрично с двух сторон тела. Они продолжаются как вперед, неся артериальную кровь к головному мозгу, так и назад. Передние ветви этих двух сосудов являются сонными артериями. На уровне заднего конца глотки задние ветви образуют спинную аорту, которая разветвляется на многочисленные артерии, направляющиеся к органам и распадающиеся на капилляры.

После тканевого газообмена кровь поступает в парные передние или задние кардинальные вены, расположенные симметрично. Передняя и задняя кардинальные вены с каждой стороны впадают в кювьеров проток. Оба кювьеровых протока впадают с двух сторон в брюшную аорту. От стенок пищеварительной системы венозная кровь оттекает по воротной вене печени в печеночный вырост, где формируется система капилляров. Затем капилляры вновь собираются в венозный сосуд - печеночную вену, по которой кровь поступает в брюшную аорту.

Таким образом, несмотря на простоту кровеносной системы в целом, уже у ланцетника имеются основные магистральные артерии, характерные для позвоночных, в том числе для человека: это брюшная аорта, преобразующаяся позже в сердце, восходящую часть дуги аорты и корень легочной артерии; спинная аорта, становящаяся позже собственно аортой, и сонные артерии. Основные вены, имеющиеся у ланцетника, также сохраняются у более высокоорганизованных животных. Так, передние кардинальные вены станут позже яремными венами, правый кювьеров проток преобразуется в верхнюю полую вену, а левый, сильно редуцировавшись, - в коронарный синус сердца. Для того чтобы понять, как это происходит, необходимо сопоставить кровеносные системы всех классов позвоночных животных.

Более активный образ жизни рыб предполагает более интенсивный метаболизм. В связи с этим на фоне олигомеризации их артериальных жаберных дуг в конечном счете до четырех пар в них отмечается высокая степень дифференцировки: жаберные сосуды распадаются на капилляры, пронизывающие жаберные лепестки. В процессе интенсификации сократительной функции брюшной аорты часть ее преобразовалась в двухкамерное сердце, состоящее из предсердия и желудочка и располагающееся под нижней челюстью, рядом с жаберным аппаратом. В остальном кровеносная система рыб соответствует строению ее уланцетника.

В связи с выходом земноводных на сушу и появлением легочного дыхания у них возникает два круга кровообращения. Соответственно этому в строении сердца и артерий появляются приспособления, направленные на разделение артериальной и венозной крови. Перемещение земноводных в основном за счет парных конечностей, а не хвоста обусловливает изменения в венозной системе задней части туловища.

Сердце амфибий расположено каудальнее, чем у рыб, рядом с легкими; оно трехкамерное, но, как и у рыб, от правой половины единственного желудочка начинается единственный сосуд - артериальный конус, разветвляющийся последовательно на три пары сосудов: кожно-легочные артерии, дуги аорты и сонные артерии. Как и у всех более высокоорганизованных классов, в правое предсердие впадают вены большого круга, несущие венозную кровь, в левое - малого с артериальной кровью. При сокращении предсердий в желудочек, внутренняя стенка которого снабжена большим количеством мышечных перекладин, одновременно попадают обе порции крови. Полного их смешения из-за своеобразного строения стенки желудочка не происходит, поэтому при его сокращении первая порция венозной крови поступает в артериальный конус и с помощью спирального клапана, находящегося там, направляется в кожно-легочные артерии. Кровь из середины желудочка, смешанная, поступает таким же образом в дуги аорты, а оставшееся небольшое количество артериальной крови, последней попадающей в артериальный конус, направляется в сонные артерии.

Две дуги аорты, несущие смешанную кровь, огибают сердце и пищевод сзади, образуя спинную аорту, снабжающую все тело, кроме головы, смешанной кровью. Задние кардинальные вены сильно редуцируются и собирают кровь только с боковых поверхностей туловища. Функционально их замещает возникшая заново задняя полая вена, собирающая кровь в основном из задних конечностей. Она располагается рядом со спинной аортой и, находясь позади печени, вбирает в себя печеночную вену, которая у рыб впадала непосредственно в венозный синус сердца. Передние кардинальные вены, обеспечивая отток крови от головы, называют теперь яремными венами, а кювьеровы потоки, в которые они впадают вместе с подключичными венами, - передними полыми венами.

В кровеносной системе пресмыкающихся возникают следующие прогрессивные изменения: в желудочке их сердца имеется неполная перегородка, затрудняющая смешение крови, поступающей из правого и левого предсердий; от сердца отходит не один, а три сосуда, образовавшихся в результате разделения артериального ствола. Из левой половины желудочка начинается правая дуга аорты, несущая артериальную кровь, а из правой -легочная артерия с венозной кровью. Из середины желудочка, в области неполной перегородки, начинается левая дуга аорты со смешанной кровью. Обе дуги аорты, как и у предков, срастаются позади сердца, трахеи и пищевода в спинную аорту, кровь в которой смешанная, но более богата кислородом, чем у земноводных, в связи с тем что до слияния сосудов только по левой дуге течет смешанная кровь. Кроме того, сонные и подключичные артерии с обеих сторон берут начало от правой дуги аорты, в результате чего артериальной кровью снабжается не только голова, но и передние конечности. В связи с появлением шеи сердце располагается еще более каудально, чем у земноводных. Венозная система пресмыкающихся принципиально не отличается от системы вен земноводных.

Прогрессивные изменения кровеносной системы млекопитающих сводятся к полному разделению венозного и артериального кровотоков. Это достигается, во-первых, завершенной четырехкамерностью сердца и, во-вторых, редукцией правой дуги аорты и сохранением только левой, начинающейся от левого желудочка. В результате все органы млекопитающих снабжаются артериальной кровью. В венах большого круга кровообращения также обнаруживаются прогрессивные изменения: возникла безымянная вена, объединяющая левые яремную и подключичную вены с правыми, в результате чего остается лишь одна передняя полая вена, располагающаяся справа. Левый кювьеров проток в виде рудиментарного сосуда sinus coronarius теперь собирает венозную кровь только от миокарда, а непарная и полунепарная вены - рудименты задних кардинальных вен, имеют существенное значение в основном в случаях формирования обходных путей венозного оттока через кава-кавальные анастомозы, формируемые ими.

В эмбриональном развитии млекопитающих и человека рекапитулируют закладки сердца и основных кровеносных сосудов предковых классов.

Сердце закладывается на первых этапах развития в виде недифференцированной брюшной аорты, которая за счет изгибания, появления в просвете перегородок и клапанов, становится последовательно двух-, трех- и четырехкамерным. Однако рекапитуляции здесь неполны в связи с тем, что межжелудочковая перегородка млекопитающих формируется иначе и из другого материала по сравнению с рептилиями. Поэтому можно считать, что четырехкамерное сердце млекопитающих формируется на базе трехкамерного сердца, а межжелудочковая перегородка является новообразованием, а не результатом доразвития перегородки пресмыкающихся. Таким образом, в филогенезе сердца позвоночных проявляется девиация: в процессе морфогенеза этого органа у млекопитающих рекапитулируют ранние филогенетические стадии, а затем развитие его идет в ином направлении, характерном лишь для этого класса.

Интересно, что место закладки и положение сердца в филогенетическом ряду позвоночных полностью рекапитулируют у млекопитающих и человека. Так, закладка сердца у человека осуществляется на 20-е сутки эмбриогенеза, как у всех позвоночных, позади головы. Позже за счет изменения пропорций тела, появления шейной области, смещения легких в грудную полость осуществляется и перемещение сердца в переднее средостение. Нарушения развития сердца могут выражаться как в возникновении аномалий строения, так и места его положения. Возможно сохранение к моменту рождения двухкамерного сердца. Этот порок совершенно не совместим с жизнью.

Чаще встречаются дефекты межпредсердной перегородки (1 случай на 1000 рождений), межжелудочковой перегородки (2,5--5 случаев на 1000 рождений), вплоть до трехкамерного сердца с одним общим желудочком. Известен и такой порок, как шейная эктопия сердца, при которой оно находится в шейной области. Этот порок связывают с задержкой сердца в области его первоначальной закладки. При этом ребенок обычно погибает сразу после рождения. Перечисленные пороки сердца наиболее часто встречаются не в изолированном виде, а в комплексе с другими аномалиями сердца, сосудов, а нередко и других органов. Это свидетельствует о том, что в морфогенезе сердца большое значение имеют онтогенетические корреляции. Состояние больных при таких пороках зависит от того, насколько сильно нарушается гемодинамика и осуществляется смешение крови в кровеносном русле.

Филогенез артериальных жаберных дуг

В связи с тем что основные артериальные сосуды у млекопитающих и человека формируются на базе закладок жаберных артерий, проследим их эволюцию в филогенетическом ряду позвоночных. В эмбриогенезе абсолютного большинства позвоночных закладывается шесть пар артериальных жаберных дуг, соответствующих шести парам висцеральных дуг черепа. В связи с тем что две первые пары висцеральных дуг включаются в состав лицевого черепа, две первые артериальные жаберные дуги быстро редуцируются. Оставшиеся четыре пары функционируют у рыб как жаберные артерии. У наземных позвоночных 3-я пара жаберных артерий теряет связь с корнями спинной аорты и несет кровь к голове, становясь сонными артериями. Сосуды 4-й пары достигают наибольшего развития и вместе с участком корня спинной аорты во взрослом состоянии становятся дугами аорты - основными сосудами большого круга кровообращения.

У земноводных и пресмыкающихся оба сосуда развиты и принимают участие в кровообращении. У млекопитающих также закладываются оба сосуда 4-й пары, а позже правая дуга аорты редуцируется таким образом, что от нее остается лишь небольшой рудимент - плечеголовной ствол. Пятая пара артериальных дуг в связи с тем, что она функционально дублирует четвертую, редуцируется у всех наземных позвоночных, кроме хвостатых амфибий. Шестая пара, которая снабжает венозной кровью кроме жабр еще и плавательный пузырь, у кистеперых рыб становится легочной артерией.

В эмбриогенезе человека рекапитуляции артериальных жаберных дуг происходят с особенностями: все шесть пар дуг никогда не существуют одновременно. В то время, когда две первые дуги закладываются, а затем перестраиваются, последние пары сосудов еще не начинают формироваться. Кроме того, пятая артериальная дуга уже закладывается в виде рудиментарного сосуда, присоединенного обычно к 4-й паре, и редуцируется очень быстро.

Из атавистических пороков развития сосудов, развивающихся из артериальных жаберных дуг, остановимся на следующих: с частотой 1 случай на 200 вскрытий детей, умерших от врожденных пороков сердца, встречается персистирование обеих дуг аорты 4-й пары. При этом обе дуги, так же как у земноводных или пресмыкающихся, срастаются позади пищевода и трахеи, образуя нисходящую часть спинной аорты. Порок проявляется нарушением глотания и удушьем. Несколько чаще (2,8 случая на 200 вскрытий) встречается нарушение редукции правой дуги аорты с редукцией левой. Эта аномалия часто клинически не проявляется.

Наиболее частый порок (0,5--1,2 случая на 1000 новорожденных) - персистирование артериального, или боталлова, протока, представляющего собой часть корня спинной аорты между 4-й и 6-й парами артерий слева. Проявляется сбросом артериальной крови из большого круга кровообращения в малый. Очень тяжелый порок развития - персистирование первичного эмбрионального ствола, в результате которого из сердца выходит только один сосуд, располагающийся обычно над дефектом в межжелудочковой перегородке. Он обычно заканчивается смертью ребенка. Нарушение дифференцировки первичного эмбрионального ствола может привести к такому пороку развития, как транспозиция сосудов - отхождение аорты от правого желудочка, а легочного ствола - от левого, что встречается в 1 случае на 2500 новорожденных. Этот порок обычно несовместим с жизнью.

Рекапитуляции проявляются и в эмбриональном развитии крупных вен человека. При этом возможно формирование атавистических пороков развития. Среди пороков развития венозного русла укажем на возможность персистирования двух верхних полых вен. Если обе они впадают в правое предсердие, аномалия клинически не проявляется. При впадении левой полой вены в левое предсердие происходит сброс венозной крови в большой круг кровообращения. Иногда обе полые вены впадают в левое предсердие. Такой порок несовместим с жизнью. Данные аномалии встречаются с частотой 1% от всех врожденных пороков сердечно-сосудистой системы.

Очень редкая врожденная аномалия - неразвитие нижней полой вены. Отток крови от нижней части туловища и ног осуществляется в этом случае через коллатерали непарной и полунепарной вен, являющихся рудиментами задних кардинальных вен.

Популяция. Ее экологические и генетические характеристики

В природных условиях организмы одного вида расселены неравномерно. Имеет место чередование участков повышенной и пониженной концентрации особей. В результате вид распадается на группировки или популяции, соответствующие зонам более плотного заселения. «Радиусы индивидуальной активности» отдельных особей ограничены. Так, виноградная улитка способна преодолеть расстояние в несколько десятков метров, ондатра - в несколько сотен метров, песец - в несколько сотен километров. Благодаря этому размножение (репродуктивные ареалы) в основном приурочено к территориям с повышенной плотностью организмов.

Вероятность случайных скрещиваний (панмиксии), обусловливающих из поколения в поколение эффективную перекомбинацию генов, внутри «сгущений» оказывается выше, чем в зонах между ними и для вида в целом. Таким образом, в репродуктивном процессе генофонд вида представлен генофондами популяций.

Популяцией называют минимальную самовоспроизводящуюся группу особей одного вида, населяющих определенную территорию (ареал) достаточно долго (в течение многих поколений). В популяции фактически осуществляется сравнительно высокий уровень панмиксии, и она в определенной степени отделена от других популяций той или иной формой изоляции.

Экологически популяция характеризуется величиной, оцениваемой по занимаемой территории (ареалу), численности особей, возрастному и половому составу. Размеры ареала зависят от радиусов индивидуальной активности организмов данного вида и особенностей природных условий на соответствующей территории. Численность особей в популяциях организмов разных видов различается. Так, количество стрекоз Leucorrhinia albifrons в популяции на одном из подмосковных озер достигало 30 000, тогда как численность земляной улитки Cepaea nemoralis оценивалась в 1000 экземпляров. Существуют минимальные значения численности, при которых популяция способна поддерживать себя во времени. Сокращение численности ниже этого минимума приводит к вымиранию популяции.

Величина популяции постоянно колеблется, что зависит от изменений экологической ситуации. Так, осенью благоприятного по кормовым условиям года популяция диких кроликов на одном из островов у юго-западного побережья Англии состояла из 10 000 особей. После холодной малокормной зимы число особей снизилось до 100.

Возрастная структура популяций организмов разных видов варьирует в зависимости от продолжительности жизни, интенсивности размножения, возраста достижения половой зрелости. В зависимости от вида организмов она может быть то более, то менее сложной. Так, у стадных млекопитающих, например дельфинов белух Delphinapterus leucas, в популяции одновременно находятся детеныши текущего года рождения, подросший молодняк прошлого года рождения, половозрелые, но, как правило, не размножающиеся животные в возрасте 2--3 лет, взрослые размножающиеся особи в возрасте 4--20 лет. С другой стороны, у землероек Sorex весной рождаются 1--2 приплода, вслед за чем взрослые особи вымирают, так что осенью вся популяция состоит из молодых неполовозрелых животных.

Половой состав популяций обусловливается эволюционно закрепленными механизмами формирования первичного (на момент зачатия), вторичного (на момент рождения) и третичного (во взрослом состоянии) соотношения полов. В качестве примера рассмотрим изменение полового состава популяции людей. На момент рождения оно составляет 106 мальчиков на 100 девочек, в возрасте 16--18 лет выравнивается, в возрасте 50 лет насчитывает 85 мужчин на 100 женщин, а в возрасте 80 лет -- 50 мужчин на 100 женщин.

Генетические характеристики популяции

Генетически популяция характеризуется ее генофондом (аллело-фондом). Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции. Генофонды природных популяций отличает наследственное разнообразие (генетическая гетерогенность, или полиморфизм), генетическое единство, динамическое равновесие доли особей с разными генотипами.

Наследственное разнообразие заключается в присутствии в генофонде одновременно различных аллелей отдельных генов. Первично оно создается мутационным процессом. Мутации, будучи обычно рецессивными и не влияя на фенотипы гетерозиготных организмов, сохраняются в генофондах популяций в скрытом от естественного отбора состоянии. Накапливаясь, они образуют резерв наследственной изменчивости. Благодаря комбинативной изменчивости этот резерв используется для создания в каждом поколении новых комбинаций аллелей. Объем такого резерва огромен. Так, при скрещивании организмов, различающихся по 1000 локусов, каждый из которых представлен десятью аллелями, количество вариантов генотипов достигает 101000, что превосходит число электронов во Вселенной.

Генетическое единство популяции обусловливается достаточным уровнем панмиксии. В условиях случайного подбора скрещивающихся особей источником аллелей для генотипов организмов последовательных поколений является весь генофонд популяции. Генетическое единство проявляется также в общей генотипической изменчивости популяции при изменении условий существования, что обусловливает как выживание вида, так и образование новых видов.

Естественный отбор, формы естественного отбора, его значение для видообразования

В природных популяциях организмов, размножающихся половым способом, существует большое разнообразие генотипов и, следовательно, фенотипов. Благодаря индивидуальной изменчивости в условиях конкретной среды обитания приспособленность разных генотипов (фенотипов) различна. В эволюционном контексте приспособленность определяют как произведение жизнеспособности в данной среде, обусловливающей большую или меньшую вероятность достижения репродуктивного возраста, на репродуктивную способность особи. Различия между организмами по приспособленности, оцениваемой передачей аллелей следующему поколению, выявляются в природе с помощью естественного отбора. Главный результат отбора заключается не просто в выживании более жизнеспособных, а в относительном вкладе таких особей в генофонд дочерней популяции.

Необходимой предпосылкой отбора является борьба за существование - конкуренция за пищу, жизненное пространство, партнера для спаривания. Естественный отбор происходит на всех стадиях онтогенеза организмов. На дорепродуктивных стадиях индивидуального развития, например в эмбриогенезе, преобладающим механизмом отбора служит дифференциальная (избирательная) смертность. В конечном итоге отбор обеспечивает дифференциальное (избирательное) воспроизведение (размножение) генотипов. Благодаря естественному отбору аллели (признаки), повышающие выживаемость и репродуктивную способность, накапливаются в ряду поколений, изменяя генетический состав популяций в биологически целесообразном направлении. В природных условиях естественный отбор осуществляется исключительно по фенотипу. Отбор генотипов происходит вторично через отбор фенотипов, которые отражают генетическую конституцию организмов.

Как элементарный эволюционный фактор естественный отбор действует в популяциях. Популяция является полем действия, отдельные особи - объектами действия, а конкретные признаки - точками приложения отбора.

Эффективность отбора по качественному и количественному изменению генофонда популяции зависит от величины давления и направления его действия. Величину давления отбора выражают коэффициентом отбора S, который характеризует интенсивность устранения из репродуктивного процесса или сохранения в нем соответственно менее или более приспособленных форм по сравнению с формой, принятой за стандарт приспособленности. Так, если некий локус представлен аллелями A1 и А2, то популяция по генотипам делится на три группы: A1A1; A1A2; А2А2. Обозначим приспособленность этих генотипов Wo, Wi, W2. Выберем в качестве стандарта первый генотип, относительная приспособленность которого максимальна и равна 1. Тогда приспособленности других генотипов составят доли этого стандарта:

A1A1A1A2A2A2

WoW1W2

или Wo/Wo = 1, W1/W0 = 1 - S1, W2/W0 = 1 - S2.

Величины S1 и S2 означают пропорциональное снижение в очередном поколении воспроизводства генотипов А1А2 и А2А2 сравнительно с генотипом A1A1.

Отбор особенно эффективен в отношении доминантных аллелей при условии их полного фенотипического проявления и менее эффективен в отношении рецессивных аллелей, а также в условиях неполной пенетрантности. На результат отбора влияет исходная концентрация аллеля в генофонде. При низких и высоких концентрациях отбор происходит медленно. Изменение доли доминантного аллеля в сравнении с рецессивным при коэффициенте отбора 0,01 приведено ниже.

Возрастание, %Число поколений

0,1-1250

1-50500

50-985000

98-99,990000

В теории, упрощая ситуацию, допускают, что отбор через фенотипы действует на генотипы благодаря различиям в приспособительной ценности отдельных аллелей. В реальной жизни приспособительная ценность генотипов зависит от влияния на фенотип и взаимодействия всей совокупности генов. Оценка величины давления отбора по изменению концентрации отдельных аллелей технически часто невыполнима. Поэтому расчет проводят по изменению концентрации организмов определенного фенотипа.

Пусть в популяции присутствуют организмы двух фенотипических классов А и В в отношении СА/СВ = U1. Вследствие различий по приспособленности происходит естественный отбор (селекция), который изменяет соотношение особей с фенотипами А и В. В следующем поколении оно станет СА/СВ = U2 = U1 (1 + S), где S -- коэффициент отбора. Отсюда S = U2/U1 -- 1. При селективном преимуществе фенотипа A U2 > U1, a S > 0. При селективном преимуществе фенотипа В U2 < U1 и S < 0. Если приспособленность фенотипов А и В сопоставима и U2 = U1, a S=0. В рассмотренном примере при S > 0 отбор сохраняет в популяции в ряду поколений фенотипы А и устраняет фенотипы В, при S < 0 имеет место обратная тенденция. Отбор, сохраняющий определенные фенотипы, по своему направлению является положительным, тогда как отбор, устраняющий фенотипы из популяции,- отрицательным.

В зависимости от результата различают стабилизирующую, движущую и дизруптивную формы естественного отбора. Стабилизирующий отбор сохраняет в популяции средний вариант фенотипа или признака. Он устраняет из репродуктивного процесса фенотипы, уклоняющиеся от сложившейся адаптивной «нормы», приводит к преимущественному размножению типичных организмов. Так, сотрудник одного из университетов США подобрал после снегопада и сильного ветра 136 оглушенных воробьев Passer domesticus. Из них 72 выживших воробья имели крылья средней длины, тогда как 64 погибшие птицы были либо длиннокрылыми, либо короткокрылыми. Стабилизирующая форма соответствует консервативной роли естественного отбора. При относительном постоянстве условий среды благодаря этой форме сохраняются результаты предшествующих этапов эволюции.

Движущий (направленный) отбор обусловливает последовательное изменение фенотипа в определенном направлении, что проявляется в сдвиге средних значений отбираемых признаков в сторону их усиления или ослабления. При смене условий обитания благодаря этой форме отбора в популяции закрепляется фенотип, более соответствующий среде. После того как новое значение признака придет в оптимальное соответствие условиям среды, движущая форма отбора сменяется стабилизирующей. Примером такого отбора является замещение в популяции гавани Плимут (Англия) крабов Carcinus maenas с широким головогрудным щитком животными с узким щитком в связи с увеличением количества ила.

Направленный отбор составляет основу искусственного отбора. Так, в одном эксперименте на протяжении ряда поколений из популяции шестинедельных мышеи отбирали для скрещивания наиболее тяжелых и наиболее легких животных. Избирательное воспроизведение по признаку массы тела привело к образованию двух самостоятельных популяций, соответственно с возрастающей и убывающей массой тела. По окончании опыта, занявшего 11 поколений, ни одна из этих популяций не вернулась к первоначальной массе.

Дизруптивный (разрывающий) отбор сохраняет несколько разных фенотипов с равной приспособленностью. Он действует против особей со средним или промежуточным значением признаков. Так, в зависимости от преобладающего цвета почвы улитки Cepaea nemoralis имеют раковины коричневой, желтой, розовой окраски. Дизруптивная форма отбора «разрывает» популяцию по определенному признаку на несколько групп. Она поддерживает в популяции состояние генетического полиморфизма.

В зависимости от формы отбор сокращает масштабы изменчивости, создает новую или сохраняет прежнюю картину разнообразия. Как и другие элементарные эволюционные факторы, естественный отбор вызывает изменения в соотношении аллелей в генофондах популяций. Особенность его действия состоит в том, что эти изменения направлены. Отбор приводит генофонды в соответствие с критерием приспособленности. Он осуществляет обратную связь между изменениями генофонда и условиями обитания, накладывает на эти изменения печать биологической целесообразности (полезности). Естественный отбор действует совместно с другими эволюционными факторами. Поддерживая генотипическое разнообразие особей в ряду поколений, мутационный процесс, а также популяционные волны, комбинативная изменчивость создают для него необходимый материал. Естественный отбор нельзя рассматривать как «сито», сортирующее генотипы по приспособленности. В эволюции ему принадлежит творческая роль. Исключая из размножения генотипы с малой приспособительной ценностью, сохраняя благоприятные генные комбинации разного масштаба, он преобразует картину генотипической изменчивости, складывающуюся первоначально под действием случайных факторов, в биологически целесообразном направлении. Результатом творческой роли отбора является процесс органической эволюции, идущей в целом по линии прогрессивного усложнения морфофизио-логической организации (арогенез), а в отдельных ветвях - пути специализации (аллогенез).

Экологические факторы и их взаимодействие. Примеры

Живые организмы находятся в постоянном взаимодействии друг с другом и факторами неживой природы. Видовой состав данной местности определяется историческими и климатическими условиями, а взаимоотношение организмов друг с другом и с окружающей средой - характером питания.

Среда - это комплекс окружающих условий, которые действуют на особь, популяцию, сообщество (биоценоз) в месте их обитания.

Жизнь возникла в воде. Из водной среды организмы вышли на сушу и освоили почвенно-воздушную и почвенную среды. Специфической средой обитания для ряда организмов стали другие живые организмы. Так возникли паразитические формы, симбионты, комменсалы. Любой организм существует в соседстве с другими живыми существами, на которые он влияет и в то же время находится под их воздействием. Оказывают влияние на живые организмы такие факторы, как свет, температура, влажность, климат и др. Элементы среды обитания, которые способны оказывать прямое или косвенное влияние на живые организмы хотя бы на одной из стадий их индивидуального развития, называются экологическими факторами. Среди них различают три группы факторов.

Абиотические, или физические - факторы неживой природы (свет, температура, вода, соленость, радиоактивные излучения, рельеф местности и т.д.).

Биотические факторы - совокупность влияний жизнедеятельности одних организмов на другие. Есть внутривидовые и межвидовые взаимодействия.

К внутривидовым взаимоотношениям относят факторы, проявляющие себя на популяционном уровне (особенности поведения, продолжительность жизни, возраст, половой состав и др.). К внутривидовым взаимоотношениями относят конкуренцию (соперничество между особями одного вида за местообитание и пищевые ресурсы).

Межвидовые взаимоотношения могут быть безразличными, вредными и полезными для партнеров.

При нейтрализме две популяции не влияют друг на друга, так как экологические требования у них различны, например, гидроидные полипы на раковине моллюска.

К вредным взаимоотношениям можно отнести межвидовую конкуренцию. К взаимополезным относят: протокооперацию, симбиоз и мутуализм. К полезнонейтральным относят комменсализм: нахлебничество, квартирантство, сотрапезничество.

Полезно-вредными считаются паразитизм и хищничество.

3. Антропогенные факторы - человек и все формы его деятельности, которые приводят к изменению природы как среды обитания других видов или непосредственно сказываются на их жизни.

Одни экологические факторы необходимы организму, без них невозможна жизнь; другие не являются обязательными. Все факторы, необходимые для жизни организма (популяции, сообщества), определяют условия его существования.

Большинство экологических факторов (температура, влажность, интенсивность солнечной радиации, источники пищи, конкуренты, паразиты и др.), подвержены значительным колебаниям в пространстве и времени.

Воздействие экологического фактора зависит от его интенсивности.

Интенсивность действия факторов называют оптимальной (opt) в том случае, если обеспечивается наиболее благоприятное существование организма. Для каждой особи, популяции, биоценоза оптимальное значение того или иного фактора различно. Оно меняется с возрастом, зависит от силы воздействия других факторов. Недостаточное или избыточное действие фактора отрицательно сказывается на жизни особи. Минимальное (min) и максимальное (max) значение действующего фактора, при которых возможна жизнедеятельность, называют пределами выносливости. Это критические точки, за пределами которых существование живого уже невозможно.

Границы, за которыми наступает гибель, называют верхними и нижними пределами выносливости. Фактор среды в конкретных условиях, наиболее удаленный от оптимума, снижает возможность существования вида в данных условиях, несмотря на оптимальные сочетания остальных факторов. Такой фактор, интенсивность которого приближается к пределу выносливости или выходит за его пределы, называют ограничивающим, или лимитирующим.

Ограничивающие факторы среды определяют географический ареал вида - расселение его по земной поверхности. Так, например, распространение вида на север может лимитироваться недостатком тепла, а на юг в сухие (аридные) районы - недостатком влаги и слишком высокими температурами. Ограничивающим фактором, определяющим низкую "плотность населения" в глубоководной зоне океана при всей жесткости условий, является пища, ее ограниченность. Биотические факторы также могут быть ограничивающими. Инжир, который на родине (районы Средиземноморья) опыляется одним из видов ос, завезен в Калифорнию, где стал плодоносить только после того, как туда были доставлены опылители - осы.

Факторы среды могут оказаться ограничивающими в одних условиях и неограничивающими в других. Например, в условиях яркого солнечного освещения недостаток цинка в почве может быть ограничивающим фактором для растений. В тени то же количество микроэлемента для данного вида растения оказывается вполне достаточным.

Сочетание всех "ограничивающих" факторов называют сопротивлением среды.

Одни виды способны выдерживать значительные отклонения от оптимального значения фактора, т.е. обладают широким диапазоном выносливости (например, медведь) и могут существовать при значительных изменениях климата и пищи. Их называют эврибионтными. Другие (стенобионтные) имеют узкий диапазон выносливости и существуют в относительно постоянных условиях среды (например, форель).

Иногда может происходить компенсация одного фактора другими, например, в местах, где мало кальция и много стронция, моллюски используют последний для построения раковины. Низкая температура на северном пределе распространения растительности компенсируется продолжительностью в течение суток светового периода (беспрерывный световой день летом).

Компенсация одного фактора другим всегда ограничена. Ни один из необходимых для жизни факторов не может быть заменен другим.

Для жизни и процветания в тех или иных условиях организм должен располагать всеми веществами, которые ему необходимы. Потребности к факторам внешней среды неодинаковы у разных видов, у одного и того же вида в разных условиях, а также на разных этапах жизненного цикла. Например, взрослые крабы из моря могут заходить в реки с достаточным содержанием в воде хлорида. Однако их личинки в реке жить не могут.

Список литературы

1. Чебышев Н.В., Гринева Г.Г., Козарь М.В., Гуленков С.И. Учебное пособие по биологии. - Москва, 2000. - 592 с.

2. Слюсарев А.А. Биология с общей генетикой. -Москва, 1978. - 472 с.

3. Кристиан Де Дюв. Путешествие в мир живой клетки. - Москва, 1978. - 256 с.

4. Шилов И.А. Экология. - Москва, 2003. - 512 с.

5. Ярыгин Н.В., Васильева В.И., Волков И. Н., Синельщиков В.В. Биология. Учеб. для медиц. спец. вузов. Т-1, Т-2. - Москва, 2004. - 431 с.

6. Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России: Учебное и справочное пособие. - 2-е изд. - Москва, 2000. - 672 с.

Размещено на Allbest.ru

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.