|
Самоорганизация в живой и неживой природеСамоорганизация в живой и неживой природеМинистерство образования российской федерации Санкт-Петербургский государственный университет экономики и финансов Заочный факультет курсовая работа По курсу «Концепции современного естествознания» На тему «Самоорганизация в живой и неживой природе» Яковлевой Натальи Сергеевны Оглавление1. Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе2. Современные подходы к анализу сложных самоорганизующихся систем. Синергетика3. Экономика с точки зрения синергетикиСписок литературы1. Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природеЭволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина [3, cc.53-54]. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени). В физике описание динамических процессов осуществляется с помощью систем дифференциальных уравнений. Традиционно как примеры динамических процессов почти во всех учебниках приводятся: движение маятника или движение одного тела в поле тяготения другого. Эти примеры, однако, являются лишь частным случаем динамических систем - это, так называемые консервативные системы. Их отличительной чертой являет обратимость во времени - система дифференциальных уравнений, описывающая динамический процесс, инвариантна относительно обращения времени [1, c.59-63]. Обратимость процессов во времени имеет интересные последствия. Консервативные динамические системы принято делить на интегрируемые и неинтегрируемые. Система дифференциальных уравнений проинтегрирована, если найден полный набор ее первых интегралов. Первым интегралом называют функцию, которая сохраняет постоянное значение на всей траектории, определяемой уравнениями движения. Первым интегралом является, например, полная энергия системы. Динамическая система называется интегрируемой, если все ее первые интегралы - аналитические функции координат и скоростей. Первые интегралы позволяют найти состояние системы в любой момент времени, если известно ее состояние в какой-либо предыдущий момент времени. Для интегрируемых систем, т.о. задание состояния системы в один из моментов времени фактически соответствует заданию всей прошлой и будущей истории системы. Это позволяет говорить о предопределенности (детерминированности) поведения интегрированной системы. Так, указанное выше движение одного тела в поле тяготения другого описывается двумя интегралами - интегралом энергии и импульса. Число первых интегралов совпадает с числом независимых динамических переменных, описывающих состояние системы, которые называются степенями свободы. Структура любой системы характеризуется распределением энергии по внутренним степеням свободы. В интегрируемых консервативных системах это распределение энергии либо остается неизменным, либо периодически меняется, - т.е. в интегрированных системах не происходит смены структур, и система рано или поздно возвращается в начальное состояние. Иными словами интегрируемые консервативные системы не эволюционируют. В конце прошлого века (1892г.) Пуанкаре доказал существование неинтегрируемых систем - суть его выводов заключалась в том, в системе, описываемой дифференциальными уравнениями, может появиться стохастическое движение. Неинтегрируемая система имеет также полный набор первых интегралов, но не все они являются аналитическими функциями. Примером неинтегрированной системы являет движение трех тел в поле тяготения друг друга - траектории тел становятся очень сложными и запутанными. Характерной чертой неинтегрированных систем является отсутствие симметрии между прошлым и будущим - неинтегрированная система эволюционирует во времени. Эволюционные свойства неинтегрируемых систем определяются в основном характером взаимодействия в системе. Систему, в которой стохастичность траекторий есть следствие внутренних взаимодействий, а не случайных внешних воздействий называют динамическим хаосом - движения частиц воспринимаются наблюдателем как случайные блуждания. Другим классом физических систем являются диссипативные системы. Диссипативные физические системы также приводят к необратимым процессам. "Ярче всего различие между консервативными и диссипативными системами проявляется при попытке макроскопического описания последних, когда для определения мгновенного состояния системы используются такие коллективные переменные, как температура, концентрация, давление и т.д."[1, c.64]. При рассмотрении поведения этих переменных выясняется, что они не инвариантны относительно операции обращения времени. В качестве простейших примеров диссипативных процессов обычно рассматриваются теплопроводность и диффузия. В случае изолированных систем, в которых нет никаких обменов с внешней средой, необратимость выражена знаменитым вторым законом термодинамики, в соответствии с которым существует функция переменных состояния системы, изменяющаяся монотонно в процессе приближения к состоянию термодинамического равновесия. Обычно в качестве такой функции состояния выбирается энтропия, и второе начало формулируется так: "производная энтропии по времени не отрицательна". Традиционно это утверждение интерпретируется как "тенденция к возрастанию разупорядоченности" или как "производство энтропии" [1, c.76-80]. В случае неизолированных систем, которые обмениваются с внешней средой энергией или веществом, изменение энтропии будет обусловлено процессами внутри системы (производство энтропии) и обменами с внешней средой (поток энтропии). Если производство энтропии в соответствии со вторым законом термодинамики неотрицательно, то "поток энтропии" может быть как положительным, так и отрицательным. Если поток энтропии отрицательный, то определенные стадии эволюции могут происходить при общем понижении энтропии. Последнее, согласно традиционной трактовке, означает, что "в ходе эволюции разупорядоченность будет уменьшаться за счет оттока энтропии"[1, c.80]. Т.о. эволюционные свойства диссипативных систем уже нельзя объяснить исключительно внутренним взаимодействием частиц. 2. Современные подходы к анализу сложных самоорганизующихся систем. СинергетикаПод самоорганизацией мы понимаем необратимый процесс, приводящий в результате кооперативного действия подсистем к образованию более сложных структур всей системы. Самоорганизация -- элементарный процесс эволюции, состоящий из не ограниченной последовательности процессов самоорганизации. Термин "самоорганизация" используется для обозначения диссипативной самоорганизации, т. е. образования диссипативных структур. Наряду с диссипативной самоорганизацией существуют и другие формы самоорганизации, такие как консервативная самоорганизация (образование структур кристаллов, биополимеров и т. д.) и дисперсионная самоорганизация (образование солитонных структур). [10, с. 491]Для объяснения процессов самоорганизации рассматриваются открытые системы, которые способны обмениваться с окружающей средой веществом, энергией или информацией. Открытая система не может быть равновесной, потому ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается. В конечном итоге прежняя взаимосвязь между элементами системы, т. е. ее прежняя структура, разрушается. Между элементами системы возникают новые согласованные связи. Благодаря этому оказалось возможным развить новую нелинейную и неравновесную термодинамику необратимых процессов, которая стала основой современной концепции самоорганизации. Для более общего и глубокого представления о конкретных механизмах самоорганизации рассмотрим основные понятия и принципы синергетики. Попытка выработки общей концепции объясняющей явления самоорганизации систем получила название "синергетика". Термин "синергетика" происходит от греческого "синергеа" - содействие, сотрудничество. Предложенный Г. Хакеном, этот термин акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого. Под этим названием объединяются различные направления исследований в различных науках - в физике, биологии, химии, математике. В математике развивается теория динамического хаоса, школа И. Пригожина развивает термодинамический подход к самоорганизации с точки зрения диссипативных структур, а Г. Хакен понимает под структурой состояние, возникающее в результате когерентного (согласованного) поведения большого числа частиц. Предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом: “Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки” [12, c. 28-29].Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, -- систем, способных к самоорганизации, саморазвитию. Основные свойства самоорганизующихся систем -- открытость, нелинейность, диссипативность.Открытые системы -- это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы -- это системы необратимые; в них важным оказывается фактор времени.Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т. е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какою-то другою процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние -- диссипативность, которую можно определить как качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую) на макроуровне, которая качественно отличается оттого, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи. Главная идея синергетики -- это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции ее разрушения средой.Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты -- точки бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает. В переломный момент самоорганизации принципиально неизвестно, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень упорядоченности и организации (фазовые переходы и диссипативные структуры -- лазерные пучки, неустойчивости плазмы, флаттер, химические волны, структуры в жидкостях и др.). В точке бифуркации система как бы “колеблется” перед выбором того или иного пути организации, пути развития. В таком состоянии небольшая флуктуация (момент случайности) может послужить началом эволюции (организации) системы в некотором определенном (и часто неожиданном или просто маловероятном) направлении, одновременно отсекая при этом возможности развития в других направлениях. Как выясняется, переход от хаоса к порядку вполне поддается математическому моделированию. И более того, в природе существует не так уж много универсальных моделей такого перехода. Качественные переходы в самых различных сферах действительности (в природе и обществе -- его истории, экономике, демографических процессах, духовной культуре и др.) подчиняются подчас одному и тому же математическому сценарию. [13,c. 45]Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы -- это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации -- от низших и простейших к высшим и сложнейшим (человек, общество, культура)3. Экономика с точки зрения синергетикиВ конце 1980-х гг. ученые начинают обсуждать возможность применение теории хаоса в социальных науках. В основном, за небольшим исключением, среди них были профессиональные математики и физики. Нужно сказать, что в экономике методы синергетики оказались востребованными несколькими годами раньше, чем в других социальных науках (например, в исследованиях, связанных с рынком ценных бумаг).Первые работы шли по пути перевода новых математических понятий и терминов на диалекты социальных наук. Во многом результаты этого направления опирались на знаменитые труды И. Пригожина и его школы. [11,c. 15]"Введение идей синергетики в социодинамику связано с именем В. Вайдлиха. Применяя синергетический подход Г. Хакена (определяя параметры порядка и используя принцип подчинения), он в течение многих лет, практически с самого начала развития синергетики, разрабатывает модели, позволяющие количественно описать коллективные процессы в обществе. С одной стороны, мы имеем интегративную динамику макрофеноменов в обществе, а с другой - решения и поведение отдельных индивидов на микросоциальном уровне. Синергетика устанавливает соотношение между микроуровнем индивидуальных решений и макроуровнем динамических коллективных процессов в обществе и дает стохастическое описание макродинамики. Синергетика прежде всего имеет громадное значение в качестве новой точки зрения на события, которые происходят в мире, отличающейся от традиционного детерминистического взгляда, который доминировал в науке со времена Ньютона. Таким образом, синергетика полезна как средство интерпретации научных данных в новом ракурсе. [11, c.19] Теория социальной самоорганизации позволяет по-новому подойти к решению целого ряда проблем: - исторического детерминизма («все дозволено» или «все предопределенно»). - природа социально-экономических кризисов и путей их преодоления (возможность бескризисное развитие общества или нет); - критерия социального прогресса (существует объективный критерий такого прогресса или его нет); - возможность долгосрочного социального прогнозирования; - возможности коэволюции (согласованного развития) природы и общества и др. Актуальность синергетической методологии связана с особенностями современной эпохи, где «не стабильность, изменчивость социального калейдоскопа парадоксальным образом становятся чуть ли не наиболее устойчивой характеристикой современности. Происходит интенсивная трансформация общественных институтов, изменение всей социальной, культурной среды обитания человека и параллельно - его взглядов на смысл и цели бытия». [14, c.110] В результате изучения различных систем различной природы, способных к самоорганизации, складывается новое - нелинейное - мышление. Система - это совокупность объектов и процессов, называемых компонентами, взаимосвязанных и взаимодействующих между собой, которые образует единое целое, обладающее свойствами, неприсущими его компонентами, взятым в отдельности. Различают простые и сложные системы. Простые системы имеют небольшое число элементов. Количество взаимосвязей между элементами невелико. Простые системы почти не зависят от окружающей среды, хорошо управляемы и мало изменяется во времени. Сложные системы состоят из большого числа элементов, между которыми имеются многочисленные взаимосвязи. Сложные системы являются объектом внимания синергетики. Например, в простых обществах нет ни руководителя, ни подчиненных, ни богатых, ни бедных, таковы первобытные племена. В сложных напротив существует несколько уровней управления, несколько социальных затрат, социальное неравенство. Важное свойство сложных систем - их способность к управлению и самоуправлению. [11, c. 23] Основной путь исследования системы - это построение модели (например, карта дорог, модель самолета, курс «Экономикс» - представляет собой набор простых моделей, описывающих отдельные элементы экономической системы). Моделирование - это прежде всего умение выделить главное (например, в экономике есть два основополагающих понятия - спрос и предложения). Методологическими ориентирами социально-экономического анализа в рамках синергетического подхода могут быть следующие: 1. Незамкнутость экономических систем. Экономическая система любого государства в целом удовлетворяют требованиям, предъявленным к открытым системам - в них постоянно циркулируют потоки денег, ресурсов, информации, людей. Важно иметь в виду, что открытость любой сложной системы порождает целый спектр нелинейных эффектов. 2. Неравновестность экономических процессов. Как отмечал Н.Н. Моисеев, «устойчивость, доведенная до своего предела, прекращает любое развитие. Она противоречит принципу изменчивости. Чересчур стабильные формы - это тупиковые формы, эволюция которых прекращается. Чрезмерная адаптация…. Столь же опасна для совершенства вида, как неспособность к адаптации» 61,с42. Теоретические модели равновесных систем в конечном счете оказываются нежизнеспособными конструкциями. 3. Необратимость экономической эволюции. Прохождение через точки ветвления эволюционного дерева (совершенный выбор) закрывает иные, альтернативные, пути и делает тем самым эволюционный процесс необратимым. 4. Нелинейность экономических преобразований. В самом общем смысле нелинейность системы заключается в том, что ее реакция на изменение внешней или внутренней среды не пропорциональна этому изменению. Наступает такой момент, когда экономическая система становится в существенной степени иной, но уловить эти переходы, даже на самом общем уровне, экономическая теория не в состоянии. 5. Неоднозначных экономических целей. Синергетика позволяет увидеть мир в другой системе координат. Выводы синергетики часто неожиданны и противоречат устоявшимся истинам. Однако именно такой взгляд позволяет обнаружить то, что теряется в традиционном ракурсе, и предупредить о серьезных опасностях, которые могут возникнуть на пути развития общества, если в бифуркационный момент (момент выбора) не будут приняты ответственные, эволюционные решения. Список литературы1. Николис Г., Пригожин И. Познание сложного. М., "Мир", 1990.2. Пригожин И., Стенгерс И. Порядок из хаоса. М., "Прогресс", 1986.3. Пригожин И., Стенгерс И. Время, хаос, квант. М., "Прогресс", 1994.4. Розгачева И.К. Самоорганизующиеся системы во Вселенной. М., "Знание", 1989.5. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., "Мир", 1991.6. Казаринов М.Ю. Детерминизм в сложных системах управления и самоорганизации. Л., Изд-во ЛГУ, 1990.7. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. 8. Князева Е.Н., Курдюмов С.П. Синергетика и принципы коэволюции сложных систем9. Найдыш В.М.. Концепции современного естествознания. М., 1999.10. Гусейханов М.К., Раджабов О.Р. Концепции современного естествознания: Учебник. -- 6-е изд., перераб. и доп. -- М.: Издательско-торговая корпорация «Дашков и К°», 2007. -- 540 с.11. Пучачев Е.Г., Соловьенко К.Н. Самоорганизация социально-экономических систем: Учебн. Пособие. - Иркутск: Изд-во БГУЭП, 2003. - 172 с.12. Хакен Г Информация и самоорганизация Макроскопический подход к сложным системам М. 1991.13. Капица С.П.. Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М., 1997.14. Некласса А. Пакс Экономикана, или Эпилог истории. Размышления у дверей третьего тысячелетия // Новый мир 1999. № 9 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |