бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Будова, функції та методи дослідження мітохондрій

Будова, функції та методи дослідження мітохондрій

ЗМІСТ

ВСТУП

РОЗДІЛ 1. МІТОХОНДРІЇ ЯК ОРГАНОЇДИ КЛІТИНИ, ЇХ БУДОВА ТА ФУНКЦІЇ

1.1 Загальна будова мітохондрій

1.2 Генетична система мітохондрій

1.3 Функції мітохондрій

1.4 Походження мітохондрій

РОЗДІЛ 2. МЕТОДИ ДОСЛІДЖЕННЯ МІТОХОНДРІЙ

РОЗДІЛ 3. ДОСЛІДЖЕННЯ МІТОХОНДРІЙ НА СУЧАСНОМУ ЕТАПІ

ВИСНОВКИ

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

ВСТУП

Мітохондрії (від греч. mitos - нитка і chondrion - зернятко, крупинка), хондріосоми, які постійно присутні в клітинах тварин і рослин, органоїд, який забезпечує клітинне дихання, у результаті якого енергія вивільнюється або акумулюється в легко використовуваній формі. Вони відрізняються рядом характерних морфологічних, біохімічних та функціональних властивостей, до яких можна віднести розмір, форму, особливість зафарбовуватись, специфічну структурну організацію, ліпопротеїдний склад та вміст великої кількості ферментів і коферментів, які разом приймають участь в процесах трансформації енергії в клітині. В фізіологічному відношенні мітохондрії являють собою біохімічну „машину”, призначення якої видобувати енергію з харчових речовин та акумулювати її за допомогою фосфорилювання в фосфатних зв'язках аденозинтрифосфата. Таким чином, мітохондрії - органоїди, які продукують енергію життєво необхідну для клітини.

Значних успіхів в дослідженні мітохондрій було досягнуто з використанням таких методів, як електронна мікроскопія та біохімічний аналіз цих органоїдів після їх виділення. Особливо багато було зроблено в 50-60-х рр. минулого століття. Тому виникає непідробний інтерес до з'ясування ролі мітохондрій, особливостей їх функціонування та успадковування, їхньої специфічної генетики.

Метою нашої курсової роботи ми обрали визначення досягнень сучасної біології у тій області, яка стосується вивчення мітохондрій. Відповідно до мети потрібно вирішити такі задачі:

- на основі літературних джерелах встановити будову мітохондрій та їх функції

- з'ясувати особливості мітохондріального геному, його функціонування, процеси успадковування;

- визначити методи, які використовуються при дослідженні мітохондрій як субклітинних структур;

- провести аналіз сучасних досліджень з даного питання на основі матеріалів журналу „Цитологія и генетика”.

Огляд сучасних матеріалів з цієї теми дасть можливість оцінити стан та глибину досліджень, які проводяться в цій царині нашими науковцями.

РОЗДІЛ 1. МІТОХОНДРІЇ ЯК ОРГАНОЇДИ КЛІТИНИ, ЇХ БУДОВА ТА ФУНКЦІЇ

1.1 Загальна будова мітохондрій

Вивчення біохіміками і цитологами мітохондрій лише в 40-50-х роках нашого сторіччя, коли методами диференціального центрифугування вдалося одержати чисті фракції мітохондрій і показати, що в них локалізуються ферменти дихального ланцюга, циклу Кребса й окисного фосфорилювання; у 1952-53 р. були проведені дослідження ультраструктури мітохондрій.

Мітохондрії відсутні у прокаріот (бактерій, синьозелених водоростей) і зустрічаються практично у всіх еукаріотичних клітинах, за винятком деяких паразитичних протестів (Entamoeba hystolytica, Trychomonas) і вільноживучої Реlomyxa polustris, що живе в умовах дефіциту кисню. Кількість мітохондрій у клітині значно варіює: клітки деяких водоростей і містять по одній мітохондрії, сперматозоїди різних видів тварин - від 20 до 72, у соматичних клітинах ссавців, як правило, 500-1000 мітохондрій, а в гігантської амеби Chaos chaos їхнє число досягає 500 000.

Однак об'ємні реконструкції мітохондрій по серіях зрізів, отримані для багатьох об'єктів за допомогою електронно-мікроскопічних досліджень, показали, що кількість мітохондрій у клітинах, очевидно, значно менша, ніж передбачалося раніш.

Так, у дріжджів, грибів, у гаметах хламідомонад є одна гігантська, сильно розгалужена мітохондрія. Природно, що на звичайних зрізах при цьому виявляються багаточисленні дрібні мітохондрії (рис. 1.1). У фібробластах і нервових клітках мозку, які культивуються in vitro, при реконструкції виявляються довгі нитковидні мітохондрії, а в лімфоцитах - дві-три великі мітохондрії, розташовані навколо ядра. У поперечносмугастих м'язових волокнах невелика кількість сильно розгалужених гігантських мітохондрій утворює так звану мітохондріальну мережу.

Рис. 1.1 - Гігантська мітохондрія гриба: 1 - ядро, 2 - ділянки мітохондрій в поперечному розрізі

Пластичність організації мітохондрій виявляється в їх змінах в онтогенезі. Наприклад, спочатку в зооспорі одного з ооміцетів всього одна велика мітохондрія. В ході розвитку вона стає більш тонкою, у ній з'являються наскрізні отвори і в кінці утворюються чотири мітохондрії: одна велика і три дрібні. В окремих представників голкошкірих велика частина дрібних мітохондрій в ооцитах по мірі росту цих клітин зливаються, і виникає гігантська кільцеподібна мітохондрія, яка оточує звичайні дрібні мітохондрії і деякі інші органоїди (зокрема, апарат Гольджі). Після попадання ооцитів у морську воду відбувається відгалуження, а потім і фрагментація гігантської кільцеподібної мітохондрії на численні дрібні. Одночасно з цим спостерігається активізація дихання ооциту. Подібні зміни відмічаються в ході клітинного циклу у Euglena gracilis. Дрібні мітохондрії об'єднуються в гігантську, котра потім фрагментується. І в цьому випадку активізація дихання збігається з утворенням численних дрібних мітохондрій з однієї гігантської.

Розміри і форма мітохондрій, які виявляються на звичайних ультрамікроскопічних зрізах, сильно варіюють. За формою вони бувають нитковидними, паличковидними, округлими і гантелеподібними навіть у межах однієї клітки. Крім того, фазово-контрастна мікроскопія живих кліток показала, що мітохондрії - дуже динамічні структури: вони можуть рости в довжину, стискуватися, розгалужуватись, ділитися - і все це швидше, ніж за одну хвилину.

Мітохондрії розташовуються в клітині, як правило, або в тих ділянках, де витрачається енергія, або біля скупчень субстрату (наприклад, ліпідних крапель). Сувора орієнтація мітохондрій виявляється вздовж джгутика у сперматозоїдів; в епітеліальних клітинах ниркових канальців мітохондрії локалізуються в складках базальної мембрани, утворюючи разом з нею апарат активного транспорту іонів, який характерний видільному і осморегулюючому епітелію. Скупчення мітохондрій виявляється в області синапсів і фоторецепторних клітин у основи зовнішнього членика, де вони складають особливу структуру - міоїд. Природно, що таке розташування мітохондрій зменшує втрати АТФ під час її дифузії.

Як показано на великому порівняльно-цитологічному матеріалі, загальний план будови мітохондрій однаковий у всіх еукаріот. Мітохондрії всіх організмів від дріжджів до вищих тварин оточені двома мембранами, між якими розташовується міжмембранний простір. Внутрішня мембрана утворює вирости в мітохондріальний матрикс - кристи; у матриксі містяться ДНК, рибосоми і різні включення. Рибосоми іноді прикріплюються до внутрішньої мембрани або утворюють полісомні ланцюги.

Форма крист може бути пластинчастою або трубчастою, вони розташовуються або паралельно довгій осі мітохондрії (аксони нервових клітин, поперечно-смугасті м'язи), або перпендикулярно їй (клітини печінки, нирок). Кристи мітохондрій досить лабільні утворення і легко переходять з однієї форми в іншу, а іноді можуть і редукуватися. Наприклад, при анаеробному розвитку дріжджів кристи майже зникають; якщо знову створити аеробні умови, то кристи відновлюються.

Структура мітохондрій залежить від функціональної активності тканини й організму. При цьому може змінюватися не тільки форма і кількість мітохондріальних крист, але і кількість самих мітохондрій. У функціонально аналогічних структурах у филогенетично віддалених тварин мітохондрії схожі між собою більше, ніж у різних органах одного і того ж виду. Наприклад, у структурі мітохондрій літальних м'язів голуба і бабки більше подібності, чим між мітохондріями літальних і скелетних м'язів бабки (рис. 1.2).

Рис. 1.2 - Загальна схема організації мітохондрій (А) та ділянка кристи з грибоподібними тілами (В): 1 - зовнішня мембрана, 2 - міжмембранний простір, 3 - внутрішня мембрана, 4 - кристи, 5 - мітохондріальний матрикс, 6 - ДНК, 7 - рибосоми, 8 - конкреції фосфату кальцію, 9 - грибовидні тіла

Кількість і ступінь розвитку крист визначаються функціональною активністю тканини. Так, у мітохондріях спороцист Fasciola hepatica, паразита печінки молюсків, кристи, одиничні. У церкарії, яка веде активний вільний спосіб життя, число крист дуже велике. Мітохондрії більшості рослинних клітин звичайно мають мало крист, але в секреторних клітинах рослин їхній так само багато, як і у тваринних клітинах.

Мітохондрії - лабільна структура, тому вони легко піддаються адаптивним перебудовам. Так, при гіподинамії у пацюків кількість як крист у мітохондріях, так і самих мітохондрій у поперечно-смугастих м'язах різко зменшується. Якщо ж цих тварин змусити активно рухатися (наприклад, плавати), мітохондрії настільки ж швидко приймають колишній вид, і відновлюється їхня вихідна кількість.

Зовнішня і внутрішня мембрани мітохондрій значно розрізняються між собою. При підвищенні або зниженні осматичного тиску внутрішня мембрана відповідно зморщується або розправляється, легко переходячи з одного стану в інше; зовнішня мембрана здатна лише до необоротнього розтягнення, яке веде до розриву. Видаляючи таким чином зовнішню мембрану, одержують препарати ізольованої внутрішньої мембрани мітохондрій. Відрізняються мембрани і проникливістю: зовнішня мембрана характеризується неспецифічною проникливістю, а проникність внутрішньої, навпроти, високоспецифічна. Мембрани мітохондрій неоднакові і по стійкості до різних ферментів і детергентам.

Розбіжності у властивостях мітохондріальних мембран обумовлені значними розбіжностями в їхній структурі. Так, співвідношення ліпідів і білків у зовнішній мембрані складає 0,88 (тобто до її складу входить менше 20% білка), а у внутрішній - 0,30 (75% білка). Ліпіди внутрішньої і зовнішньої мембран розрізняються зо вмістом насичених жирних кислот - у ліпідах внутрішньої мембрани їх більше. Неоднаковий і склад ліпідів у мембранах. Так, у внутрішній мембрані дуже низький рівень вмісту холестерину і високий - кардіоліпіну, „подвійного” фосфогліцериду, який складається з двох залишків фосфатидної кислоти, зв'язаних один з одним гліцерином. Цей ліпід практично не зустрічається в інших мембранах еукаріотичних клітин і, очевидно, обумовлює малу проникливість внутрішньої мітохондріальної мембрани для іонів.

Неспецифічна проникникливість зовнішньої мембрани визначається наявністю в ній білків поринів, які формують у ліпідному бішарі численні канали, через які можуть проходити молекули масою до 10 кДа.

Зовнішня мембрана мітохондрій бідна ферментами; небагато їх і в міжмембранному просторі. Зате внутрішня мембрана і мітохондріальний матрикс буквально насичені ними. Так, у матриксі зосереджені ферменти циклу Кребса й окислювання жирних кислот. У внутрішній мембрані локалізований ланцюг переносу електронів, дихальний ланцюг, ферменти фосфорилювання і численні транспортні системи, що забезпечують її виборчу проникність. Мітохондрії являють собою структури, які здатні обновлюватися та мають досить короткий життєвий цикл (у клітках печінки пацюка, наприклад, період напівжиття мітохондрій складає близько 10 днів). Мітохондрії утворюються в результаті росту й поділу поппередньо існуючих мітохондрій. Цей процес іноді протікає дуже швидко і з великою інтенсивністю (зокрема при адаптивних перебудовах). Діляться мітохондрії за допомогою перетяжки.

1.2 Генетична система мітохондрій

Мітохондрія має власну генетичну систему - мітохондріальну ДНК і власний білоксинтезуючий апарат. Діленню (репродукції) мітохондрій передує реплікація мітохондріальної ДНК. Синтез ДНК мітохондрій при діленні клітин відбувається незалежно від реплікації ядерної ДНК.

У більшості об'єктів ДНК мітохондрій являє собою дволанцюгову ковалентно замкнуту структуру. В одній мітохондрії може бути від однієї до 20 000 кільцевих молекул ДНК, молекулярна маса яких варіює від (9-10) * 106 у хребетних до (3-4) * 107 у вищих рослині і грибів. Розміри кільцевих молекул ДНК у більшості мітохондріальних геномів варіюють від 16-20 (у хребетних) до 570 кілобаз у вищих рослин (кукурудза), а лінійна довжина молекули складає 5 мкм у дріжджів і 30 мкм у вищих рослин.

У мітохондріях тваринних клітин знаходиться кілька молекул ДНК, практично не помітних на звичайних електронно-мікроскопічних препаратах. У клітинах рослин їх, як правило, більше, так що при ультраструктурних дослідженнях мітохондріальна ДНК може бути виявлена у виді тонких фібрил. І, нарешті, у мітохондріях деяких кінетопластид (наприклад, трипаносомових) безліч кільцевих молекул ДНК поєднуються у велику електронно-щільну структуру - кінетопласт. У єдиній гігантській мітохондрії кінетопластид виявляється цікава модифікація мітохондріального геному: генетичний апарат тут представлений великою кількістю кільцевих молекул двох типів - так званих максі-кілець (вони гомологічні кільцевим ДНК мітохондрій інших об'єктів) і мінікілець - вони майже не містять генетичної інформації і їхнє функціональне значення стало прояснятися лише останнім часом. У рідких випадках, наприклад у водорості хламідомонади і інфузорій парамецій, мітохондріальний геном може складатися з лінійних молекул ДНК.

Про надмолекулярне упакування мітохондріальної ДНК відомо небагато. Очевидно, фібрили мітохондріальної ДНК за способом упакування нагадують хромосому прокаріот. У деяких об'єктів виявлені основні білки невеликої молекулярної маси, начебто зв'язані з мітохондріальною ДНК. Мітохондріальна ДНК відрізняється від ядерної за складом основ, плавучій щільності і ряду інших фізико-хімічних властивостей.

Значних успіхів досягла генетика мітохондрій. Численні роботи проводяться на мітохондріальних мутантах дріжджів (мутації дихального ланцюга, які не ведуть до загибелі кліток, тому що вони переходять на бродильний тип обміну). При дослідженнях клітин, які культивувалися in vitro вдалося одержати численні мітохондріальні мутанти в птахів, ссавців (у тому числі і людини); були отримані навіть клітини з мітохондріями без власної ДНК.

Дослідження в області мітохондріальної генетики з використанням мутантних клітин дозволили встановити, що ДНК мітохондрій властиві всі генетичні функції: рекомбінація, репарація і т.д. Було показано, що мітохондрії характеризуються так називаною полярністю, тобто перевагою в мітохондрій дочірніх клітин рекомбінантів одного типу: успадковування мітохондріального геному у тваринних і рослинних клітин в основному іде по материнській лінії. Правда, ці дані були отримані на обмеженому числі об'єктів. Останнім часом були виявлені факти спадкування обох типів батьківських мітохондріальних геномів у тваринних клітин і спадкування тільки по батьківській лінії в рослинних клітинах (секвойя). Для позначення цього явища - наявності в індивіда більше одного класу мітохондріального генома (або генома хлоропластів) запропонований спеціальний термін - гетероплазмія.

Дослідження в області мітохондріальної генетики дозволили картувати мітохондріальні геноми в різних об'єктів. Зокрема, є повна характеристика геномів мітохондрій клітин людини і дріжджів; про інші організми існують уривчасті відомості.

Обсяг інформації, закодованої в геномі мітохондрій, відносно невеликий; мітохондріальний геном, як правило, містить матриці для синтезу власних тРНК і високомолекулярних рРНК і деяких субодиниць ферментів дихального ланцюга й АТФ-синтазного комплексу.

Автономність білоксинтезуючої системи мітохондрій значно менша, ніж здається на перший погляд. Білкові фактори трансляції мітохондріальних РНК кодуються не ДНК мітохондрій, а ядерною ДНК, тобто процес трансляції в мітохондріях не може здійснюватися незалежно від ядерного геному. Крім того, у ДНК ядра є інформація, необхідна для синтезу факторів реплікації мітохондріальної ДНК, РНК-полімераз, що здійснюють транскрипцію ДНК мітохондрій, білків, які входять до складу 70 S рибосом (за винятком одного білка малої субодиниці) і більшої частини компонентів електроннотранспортного ланцюга й АТФ-синтазного комплексу.

В даний час велика увага приділяється вивченню механізмів транслокації білків через мітохондріальні мембрани. Встановлено, що численні білки дихального ланцюга, АТФ-синтазного комплексу і матриксу проходять у мітохондрії, очевидно, у ділянках тісного контакту зовнішньої і внутрішньої мембран - так називаних контактних сайтах. Тут знаходиться спеціальний білок-рецептор молекулярною масою 45 кДа, і утворюються специфічні канали. Процес цей вимагає енергії АТФ.

Більшість мітохондріальних мембранних ліпідів синтезується на ЕПС і вбудовується в мембрану мітохондрій. Ліпіди надходять до зовнішньої мембрани мітохондрій і попадають у внутрішню мембрану через контактні сайти. У мітохондріальних мембранах відбувається перетворення екзогенного фосфатидилсерину у фосфатидилетаноламін і утворення з «імпортованих» ліпідів кардіоліпіну - специфічного ліпіду внутрішньої мембрани мітохондрій.

Дослідження геному і білоксинтезуючого апарату мітохондрій дозволили прийти до висновку, що їм властиві деякі специфічні риси. Так, у мітохондріях має істотні особливості їх генетичний код. Універсальний термінінуючий кодон UGA у мітохондріях ссавців, дрозофіл і дріжджів кодує триптофан, а ізолейциновий кодон AUA - метіонін. Більш того, мітохондріальний генетичний код відрізняється в різних організмів. Так, лейциновий кодон GUA у мітохондріях ссавців і дрозофіл також кодує лейцин, а в мітохондріях дріжджів - треонін. Кодони AGA і AGG, які несуть в універсальному коді інформацію для синтезу аргініну, функціонують як термінуючі кодони в мітохондріях ссавців, кодують серин в мітохондріях дрозофіл і аргінін у мітохондріях дріжджів. У вищих рослин мітохондріальний генетичний код збігається з ядерним. Для зчитування всіх кодонів у білоксинтезуючому апараті мітохондрій досить всього 22-24 тРНК на відміну від цитозолю (де є принаймні 31 тРНК) і хлоропластів (30 тРНК); трансляція в мітохондріях відбувається з меншою точністю; мітохондріальні рибосоми також мають деякі особливості.

Геном мітохондрій людини відносять до так називаного „ощадливого” типу. Основна інформація закодована у важкому ланцюзі (Н-ланцюг) ДНК (у ній локалізуються гени двох високомолекулярних рРНК, 14 тРНК і 12 генів, які кодують іРНК для білків внутрішньої мембрани мітохондрій). У легкому ланцюзі (L-ланцюг) ДНК зберігається інформація тільки про 8 тРНК і одну іРНК для єдиного білка малої субодиниці мітохондріальних рибосом.

У мітохондріях рослин кодується низькомолекулярна РНК рибосом. У мітохондріальних геномах хламідомонади й інфузорії тетрахімени зберігається інформація не про всі тРНК: частина тРНК, які працюють у мітохондріях, закодована в геномі ядра. А в ядерному геномі трипаносомід представлена інформація про всі тРНК мітохондріальні білоксинтезуючі системи. Істотні розходження спостерігаються між різними об'єктами й у кодуванні білків дихального ланцюга й АТФ-синтазного комплексу. Таким чином, на тлі відносної сталості інформаційної ємності мітохондріального генома виявляється і значна еволюційна пластичність цієї ознаки.

1.3 Функції мітохондрій

Різноманітні функції мітохондрій настільки тісно зв'язані з їхньою структурою, що їх зовсім неможливо вивчати окремо.

Ще перші цитологи, починаючи з Альтмана, припускали, що мітохондрії зв'язані з процесами окислювання в клітинах. У 1912 р. Бателі і Штерн, а потім у 1913 р. і Варбург встановили, що дихальні ферменти утримуються в нерозчинній фракції клітини. Про це відкриття не згадували до 1929 р., коли Кейліну вдалося виділити з м'язового волокна частки, які містять сукцинат- і цитохромоксидази. Це була перша поліферментна система, виділена з клітки, але її не вдалося ідентифікувати специфічними цитологічними методами. Класична робота Бенслі і Херра, які виділили гранулярну фракцію з клітин печінки і ідентифікували ці гранули з мітохондріями, проклала шлях сучасному вивченню ферментативних функцій мітохондрій. Було встановлено, що ізольовані мітохондрії активно окисляють глутамінову і янтарну кислоти і дають позитивну реакцію на цитохромоксидазу з реактивом нади. Було також виявлено, що при дегенерації мітохондрій, яка була викликана заморожуванням і наступним відтаванням клітини, в останньому знижується споживання кисню й активність сукцинатоксидази і цитохромоксидази. Нарешті, Хогебум, Клод і Хочкісс у 1946 р. довели, що обидва ці ферменти зв'язані з мітохондріальною фракцією клітини. З тих пір виділення мітохондрій стало широко розповсюдженою процедурою, і у вивченні функцій мітохондрій були досягнуті великі успіхи.

Ще з часів перших досліджень удалося установити, що мітохондрії складаються на 65-70% з білка і на 25-30% з ліпідів, головним чином фосфатидів (лецитину і кефаліну); холестерин та інші ліпіди присутні лише в незначній кількості. РНК незмінно складає близько 0,5% сухої ваги мітохондрій.

Існують два основних способи дослідження виділених мітохондрій: або їх вивчають у виді інтактних часток, або ці частки розділяють на усе більш і більш дрібні фрагменти, кожний з яких містить певні групи, які володіють ферментативною активністю. Обидва шляхи дослідження виявилися надзвичайно плідними і забезпечили одержання важливих даних про макромолекулярну і функціональну організацію мітохондрій.

Ферментна система мітохондрій. Ферментативні процеси мітохондрій вкрай складні; щоб їх охарактеризувати кількісно, достатньо сказати, що в реакції, які звичайно протікають у кожній мітохондрії, беруть більш 70 ферментів і коферментів, не рахуючи великого числа кофакторів, вітамінів і деяких металів.

Єдиною „сировиною”, яку потребують мітохондрії, є фосфат і аденозиндифосфат (АДФ), а кінцевим продуктом - АТФ, СО2 і Н2О. Три основні харчові речовини клітини (вуглеводи, жири і білки) в остаточному розщеплюються в цитоплазмі до двовуглецевих одиниць. Кожна така одиниця вступає в з'єднання з коферментом А, в результаті чого утворюється ацетилкофермент А. Коли останній попадає в мітохондрію, його ацетатна група вступає в цикл Кребса (його називають також циклом трикарбонових кислот або циклом лимонної кислоти) і після ряду складних реакцій за участю різних ферментів проходить декарбоксилювання, тобто вуглець, який входить до його складу виділяється у вигляді СО2. На різних етапах циклу пари електронів (або еквівалентне число атомів Н) під дією дегідрогеназ переносяться в дихальний ланцюг (ланцюг переносу електронів); зрештою вони з'єднуються з молекулярним киснем, утворюючи молекули води.

Дихальний ланцюг являє собою головну систему перетворення енергії в мітохондріях. Її компоненти не тільки функціонально, але і просторово тісно зв'язані зі структурою мітохондрій. До складу основних компонентів дихального ланцюга входять два флавопротеїдних фермента (сукцинат- і ДПН-дегідрогенази), чотири цитохроми, а також негемінове залізо, мідь і кофермент Q. У трьох точках цього ланцюга за рахунок енергії електронів з АДФ і фосфату утвориться АТФ. Тому говорять, що дихальний ланцюг сполучений з фосфорилюванням.

Локалізація ферментної системи мітохондрій. Один з методів вивчення локалізації ферментів у мітохондріях складається в подрібненні цих часток на фрагменти різного розміру, які мають різними властивостями. Якщо зважку мітохондрій піддати дії ультразвуку, то розчинні білки, які містяться в матриксі виділяються і в осадженій фракції залишаються частини мембран. Наприклад, у мітохондріях із клітин печінки утримується більше розчинних білків, чим у мітохондріях серцевого м'яза, які мають більш компактну структурою і велику кількістю крист.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.