|
Основы естествознанияp align="left">Учение Аристотеля о пространстве и времени исходит из понятия непрерывности. Поэтому пространство для него -- это протяженность тел, а время -- их длительность. Пространство и время Аристотеля существуют только вместе с материей, поэтому его концепция пространства и времени может быть названа относительной. Он отрицает существование пустоты, весь Космос заполнен материей, он не однороден, так как в нем есть центр и периферия, верх и низ. Именно по отношению к ним мы разделяем движения на естественные и насильственные.Концепция причинно-следственных связей Аристотеля строится на понятиях целесообразности и конечной причины. Для него ход любого процесса определяется его результатом. Мыслитель воспринимает природу как единый живой организм, все части которого взаимосвязаны, и одно происходит ради другого. Так, дождь идет не потому, что сложились соответствующие метеорологические условия, а для того, что мог расти хлеб. Такой подход называется телеологизмом. Он не отрицает существование случайностей, но они носят второстепенный характер, происходят по недосмотру природы. Космология Аристотеля носила геоцентрический характер, поскольку основывалась на идее, что в центре мира находится наша планета Земля, имеющая сферическую форму и окруженная водой, воздухом и огнем, за которыми находятся сферы больших небесных светил, вращающихся вокруг Земли вместе с другими маленькими светилами. Бесспорным достижением Аристотеля стало создание формальной логики, изложенной в его трактате «Органон» и поставившей науку на прочный фундамент логически обоснованного мышления с использованием понятийно-категориального аппарата. Ему же принадлежит утверждение порядка научного исследования, которое включает изучение истории вопроса, постановку проблемы, внесение аргументов «за» и «против», а также обоснование решения. После его работ научное знание окончательно отделилось от метафизики (философии), также произошла дифференциация самого научного знания. В нем выделились математика, физика, география, основы биологии и медицинской науки. Завершая рассказ об античной науке, нельзя не сказать о работах других выдающихся ученых этого времени. Активно развивалась астрономия, которой нужно было привести в соответствие наблюдаемое движение планет (они движутся по очень сложным траекториям, совершая колебательные, петлеобразные движения) с предполагаемым их движением по круговым орбитам, как этого требовала геоцентрическая модель мира. Решением этой проблемы стала система эпициклов и деферентов александрийского астронома Клавдия Птолемея (I--II вв. н.э.). Чтобы спасти геоцентрическую модель мира, он предположил, что вокруг неподвижной Земли находится окружность с центром, смещенным относительно центра Земли. По этой окружности, которая называется деферентом, движется центр меньшей окружности, которая называется эпициклом. Нельзя не сказать еще об одном античном ученом, заложившем основы математической физики. Это -- Архимед, живший в III в. до н.э. Его труды по физике и механике были исключением из общих правил античной науки, так как он использовал свои знания для построения различных машин и механизмов. Тем не менее, главным для него, как и для других античных ученых, была сама наука. И механика для него становится важным средством решения математических задач. Хотя для Архимеда техника была лишь игрой научного ума, результатом выхода науки за свои рамки (то же отношение к технике и машинам как к игрушкам было характерно для всей эллинистической науки), его работы сыграли основополагающую роль в возникновении таких разделов физики, как статика и гидростатика. В статике Архимед ввел в науку понятие центра тяжести тел, сформулировал закон рычага. В гидростатике он открыл закон, носящий его имя: на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной телом. Как видно из приведенного и далеко не полного перечня идей и направлений натурфилософии, на этой стадии были заложены основы многих современных теорий и отраслей естествознания. В то же время не менее важным представляется формирование в этот период стиля научного мышления, включающего стремление к нововведениям, критику, стремление к упорядоченности и скептическое отношение к общепринятым истинам, поиск универсалий, дающих рациональное понимание окружающего мира. Развитие науки в Средние века Развитие естественно-научного познания в Средние века было непосредственно сопряжено с утверждением двух мировых религий: христианства и ислама, которые претендовали на абсолютное знание природы. Эти религии объясняли происхождение природы в форме креационизма, т.е. учения о сотворении природа Богом. Все другие попытки объяснить мир и природу из самих себя, без допущения сверхъестественных божественных сил, осуждались и беспощадно пресекались. Многие достижения античной науки были забыты. В отличие от античности, средневековая наука не предложила новых фундаментальных программ, но она в то же время не ограничивалась только пассивным усвоением достижений античной науки. Ее вклад в развитие научного знания состоял в том, что был предложен целый ряд новых интерпретаций и уточнений понятий и методов исследования, которые разрушали античные научные программы, подготавливая почву для механики Нового времени. С точки зрения христианского мировоззрения человек считался созданным по образу и подобию Божьему, чтобы он был господином земного мира. Так в сознание человека проникает очень важная идея, которая никогда не возникала и не могла возникнуть в античности: раз человек является господином этого мира, значит, он имеет право переделывать этот мир так, как это нужно ему. Новый, деятельный подход к природе был также связан с изменением отношения к труду, который становится обязанностью каждого христианина. Так постепенно физический труд стал пользоваться в средневековом обществе все большим уважением. Тогда же возникло желание облегчить этот труд, что вызвало новое отношение к технике. Теперь изобретение машин и механизмов переставало быть пустой забавой, как в античности, а становилось делом полезным и уважаемым. Все это не могло не подкрепить нового, деятельностно-практического отношения к миру. Таким образом, именно христианское мировоззрение посеяло зерна нового отношения к природе, которое позволило уйти от созерцательного отношения, присущего античности, и прийти к экспериментальной науке Нового времени, поставившей целью практическое преобразование мира для блага человека. Христианское вероучение, соединенное с выхолощенной философией Аристотеля, явилось в Средние века господствующим философским направлением и получило название схоластики. Для этого направления мысли было характерно упрощение натурфилософии Аристотеля и приспособление ее к догмам христианства в качестве официальной религиозной доктрины. Схоластика была оторвана от реальной действительности, занятие естествознанием рассматривалось как пустое дело. Тем не менее, схоластика сыграла очень важную роль в развитии способностей к познанию мира европейским человеком. Она должна была служить задачам теологии и изучать вопросы бессмертия души, конечности и бесконечности мира, существования добра, зла и истины в мире. При решении этих проблем, не данных человеку в области чувственной реальности и могущих изучаться только с помощью разума, и были получены важнейшие результаты. Это, прежде всего, развитие логико-дискурсивного мышления и искусства логической аргументации. Результатом стал высочайший уровень умственной дисциплины в эпоху позднего Средневековья. Без этого был бы невозможен дальнейший прогресс интеллектуальных средств научного познания. В недрах средневековой культуры успешно развивались такие специфические области знания, как астрология, алхимия, ятрохи-мия, натуральная магия. Часто их называли герметическими (тайными) науками. Они представляли собой промежуточное звено между техническим ремеслом и натурфилософией, содержали в себе зародыш будущей экспериментальной науки в силу своей практической направленности. Например, на протяжении тысячелетия алхимики пытались с помощью химических реакций получить философский камень, способствующий превращению любого вещества в золото, приготовить эликсир долголетия. Побочными продуктами этих поисков и исследований стали технологии получения красок, стекла, лекарств, разнообразных химических веществ и т.д. Таким образом, алхимические исследования, несостоятельные теоретически, подготовили возможность появления современной науки. Очень важными для становления классической науки Нового времени были новые представления о мире, опровергавшие некоторые положения античной научной картины мира. Они легли в основу механистического объяснения мира. Без таких представлений просто не смогло бы появиться классическое естествознание. Так, появились понятия пустоты, бесконечного пространства и движения по прямой линии. Также появляются понятия «средняя скорость», «равноускоренное движение», вызревает понятие ускорения. Конечно, эти понятия еще нельзя считать четко сформулированными и осознанными. Но без них, однако, не смогла бы появиться физика Нового времени. Также закладывается новое понимание механики, которая в античности была прикладной наукой. Античность и раннее Средневековье рассматривали все созданные человеком инструменты как искусственные, чуждые природе. В силу этого они не имели никакого отношения к познанию мира, так как действовал принцип: «подобное познается подобным». Именно поэтому только человеческий разум в силу принципа подобия человека космосу (единства микро- и макрокосмоса) мог познавать мир. Теперь же инструменты стали считаться частью природы, лишь обработанной человеком, и в силу своего тождества с ней их можно было использовать для познания мира. Таким образом, открывалась возможность использования экспериментального метода познания. Еще одной новацией стал отказ от античной идеи о модели совершенства -- круге. Эта модель была заменена моделью бесконечной линии, что способствовало формированию представлений о бесконечности Вселенной, а также лежало в основе исчисления бесконечно малых величин, без которого невозможно дифференциальное и интегральное исчисление. На нем строится вся математика Нового времени, а значит, и вся классическая наука. Развитие науки в эпоху Возрождения Развитие науки в эпоху Возрождения неразрывно связано с именем Леонардо да Винчи, который развил свой метод познания природы. Он был убежден, что познание идет от частных опытов и конкретных результатов к научному обобщению. По его мнению, опыт является не только источником, но и критерием познания. Будучи приверженцем экспериментального метода исследования, он изучал падение тел, траекторию полета снарядов, коэффициенты трения, сопротивления материалов и т.д. В ходе своих исследований да Винчи заложил фундамент экспериментального естествознания. Например, занимаясь практической анатомией, он оставил зарисовки внутренних органов человека, снабженные описанием их функций. В итоге многолетних наблюдений он раскрыл явление гелиотропизма (изменения направления роста органов растения в зависимости от источника света) и объяснил причины появления жилок на листьях. Леонардо да Винчи считается первым исследователем, который обозначил проблему связи между живыми существами и окружающей их природной средой. Глобальная научная революция XVI--XVII вв. В XVI--XVII вв. натурфилософское и схоластическое познание природы превратилось в современное естествознание, систематическое научное познание на базе экспериментов и математического изложения. В этот период в Европе сформировалось новое мировоззрение и начался новый этап в развитии науки, связанный с первой глобальной естественно-научной революцией. Ее отправной точкой стал выход в 1543 г. знаменитой книги Николая Коперника «О вращении небесных сфер». С этого момента начался переход от геоцентрической к гелиоцентрической модели Вселенной. В схеме Коперника Вселенная по-прежнему оставалась сферой, хотя размеры ее резко возрастали (только так можно было объяснить видимую неподвижность звезд). В центре Космоса находилось Солнце, вокруг которого вращались все известные к тому времени планеты, в том числе Земля со своим спутником Луной. Новая модель мира сразу объяснила многие непонятные ранее эффекты, прежде всего, петлеобразные движения планет, которые согласно новым представлениям были обусловлены движением Земли вокруг своей оси и вокруг Солнца. Впервые нашла свое объяснение смена времен года. Следующий шаг в становлении гелиоцентрической картины мира был сделан Джордано Бруно, который отверг представление о космосе как о замкнутой сфере, ограниченной сферой неподвижных звезд. Бруно впервые заявил о том, что звезды -- это не светильники, созданные Богом для освещения ночного неба, а такие же солнца, как и наше, и вокруг них могут вращаться планеты, на которых, возможно, живут люди. Таким образом, Бруно предложил набросок новой полицентрической картины мироздания, окончательно утвердившейся век спустя: Вселенная вечна во времени, бесконечна в пространстве, вокруг бесконечного числа звезд вращается множество планет, населенных разумными существами. Однако несмотря на всю грандиозность этой картины, она продолжала оставаться эскизом, наброском, нуждавшимся в фундаментальном обосновании. Нужно было открыть законы, действующие в мире и доказывающие правильность предположений Коперника и Бруно. Доказательство их идей стало одной из важнейших задач первой глобальной научной революции, которая началась с открытий Галилео Галилея. Его труды в области методологии научного познания предопределили облик классической, а во многом и современной науки. Он придал естествознанию экспериментальный и математический характер, сформулировал гипотетико-дедуктивную модель научного познания. Но особое значение для развития естествознания имеют работы Галилея в области астрономии и физики. Дело в том, что со времен Аристотеля ученые считали, что между земными и небесными явлениями и телами существует принципиальная разница, так как небеса -- место нахождения идеальных тел, состоящих из эфира. В силу этого считалось невозможным изучать небесные тела, находясь на Земле. Это задерживало развитие науки. После того, как в 1608 г. была изобретена зрительная труба, Галилей усовершенствовал ее и превратил в телескоп с 30-кратным увеличением. С его помощью он совершил целый ряд выдающихся астрономических открытий. Среди них -- горы на Луне, пятна на Солнце, фазы Венеры, четыре крупнейших спутника Юпитера. Он же первый увидел, что Млечный Путь представляет собой скопление огромного множества звезд. Все эти факты доказывали, что небесные тела -- это не эфирные создания, а вполне материальные предметы и явления. Ведь не может быть на идеальном теле гор, как на Луне, или пятен, как на Солнце. С помощью своих открытий в механике Галилей разрушил догматические построения господствовавшей почти в течение двух тысяч лет аристотелевской физики. Он впервые проверил многие утверждения Аристотеля опытным путем, заложив тем самым основы нового раздела физики -- динамики, науки о движении тел под действием приложенных сил. Именно Галилей сформулировал понятия физического закона, скорости, ускорения. Но величайшими открытиями ученого стали идея инерции и классический принцип относительности. Галилей считал, что движущееся тело стремится пребывать в постоянном равномерном прямолинейном движении или в покое, если только какая-нибудь внешняя сила не остановит его или не отклонит от направления его движения. Таким образом, движение по инерции -- это движение при отсутствии на него действия других тел. Согласно классическому принципу относительности, никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно. Также классический принцип относительности утверждает, что между покоем и равномерным прямолинейным движением нет никакой разницы, они описываются одними и теми же законами. Равноправие движения и покоя, т.е. инерциальных систем (покоящихся или движущихся друг относительно друга равномерно и прямолинейно), Галилей доказывал рассуждениями и многочисленными примерами. Например, путешественник в каюте корабля с полным основанием считает, что книга, лежащая на его столе, покоится. Но человек на берегу видит, что корабль плывет, и он имеет все основания утверждать, что книга движется и притом с той же скоростью, что и корабль. Так движется на самом деле книга или покоится? На этот вопрос, очевидно, нельзя ответить просто «да» или «нет». Спор между путешественником и человеком на берегу был бы пустой тратой времени, если бы каждый из них отстаивал только свою точку зрения и отрицал точку зрения партнера. Они оба правы, и чтобы согласовать позиции, им нужно только признать, что в одно и то же время книга покоится относительно корабля и движется относительно берега вместе с кораблем. Таким образом, слово «относительность» в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в утверждение о том, что движение или покой -- всегда движение или покой относительно чего-то, что служит нам системой отсчета. В ходе дальнейшего развития естествознания Иоганн Кеплер установил истинные орбиты движения планет. В своих трех законах он показал, что планеты движутся по эллиптическим орбитам, причем их движение происходит неравномерно. Огромную роль в развитии науки сыграли исследования Рене Декарта по физике, космологии, биологии, математике. Учение Декарта представляет собой единую естественно-научную и философскую систему, основывающуюся на постулатах о существовании непрерывной материи, заполняющей все пространство, и ее механическом движении. Ученый поставил задачу, исходя из установленных им принципов устройства мира и представлений о материи, пользуясь лишь «вечными истинами» математики, объяснить все известные и неизвестные явления природы. Решая эту задачу, он возродил идеи античного атомизма и построил грандиозную картину Вселенной, охватив в ней все элементы природного мира: от небесных светил до физиологии животных и человека. При этом свою модель природы Декарт строил только на основе механики, которая в то время достигла наибольших успехов. Представление о природе как о сложном механизме, которое Декарт развил в своем учении, сформировалось позднее в самостоятельное направление развития физики, получившее название картезианства. Декартовское (картезианское) естествознание закладывало основы механического понимания природы, процессы которой рассматривались как движения тел по геометрически описываемым траекториям. Однако картезианское учение не было исчерпывающим. В частности, движение планет должно было подчиняться закону инерции, т.е. быть прямолинейным и равномерным. Но поскольку орбиты планет остаются сплошными замкнутыми кривыми и подобного движения не происходит, то становится очевидным, что какая-то сила отклоняет движение планет от прямолинейной траектории и заставляет их постоянно «падать» по направлению к Солнцу. Отныне важнейшей проблемой новой космологии становилось выяснение природы и характера этой силы. Природа этой силы была открыта Исааком Ньютоном, работы которого завершили первую глобальную естественно-научную революцию. Он доказал существование тяготения как универсальной силы и сформулировал закон всемирного тяготения. Ньютоновская физика стала вершиной развития взглядов в понимании мира природы в классической науке. Ньютон обосновал физико-математическое понимание природы, ставшее основой для всего последующего развития естествознания и формирования классического естествознания. В ходе своих исследований Ньютон создал методы дифференциального и интегрального исчисления для решения проблем механики. Благодаря этому ему удалось сформулировать основные законы динамики и закон всемирного тяготения. Механика Ньютона основана на понятиях количества материи (массы тела), количества движения, силы и трех законов движения: закона инерции, закона пропорциональности силы и ускорения и закона равенства действия и противодействия. В своей механике Ньютон отказался от построения всеобъемлющей картины Вселенной и создал собственный метод физического исследования, который опирается на опыт, ограничивающийся фактами, и не претендует на познание всех конечных причин. Согласно ньютоновской концепции, физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек). Любое физическое действие представляет собой движение материальных точек в пространстве, управляемое неизменными законами механики. Хотя Ньютон громко провозгласил: «Гипотез не измышляю!», тем не менее некоторое количество гипотез было им предложено и они сыграли очень важную роль в развитии естествознания. Эти гипотезы были связаны с дальнейшей разработкой идеи всемирного тяготения, которое оставалось достаточно загадочным и непонятным. В частности, необходимо было ответить на вопросы: «Каков механизм действия этой силы?», «С какой скоростью она распространяется?», «Есть ли у нее материальный носитель?». Пытаясь решить эту проблему, Ньютон предложил подтверждавшийся, как тогда казалось, бесчисленным количеством фактов принцип дальнодействия -- мгновенное действие тел друг на друга на любом расстоянии без каких-либо посредствующих звеньев, через пустоту. Принцип дальнодействия невозможен без привлечения понятий абсолютного пространства и абсолютного времени, также предложенных Ньютоном. Абсолютное пространство понималось как вместилище мировой материи. Его можно сравнить с большим черным ящиком, в который можно поместить материальное тело, но можно и убрать, тогда материи не будет, а пространство останется. Также должно существовать и абсолютное время как универсальная длительность, постоянная космическая шкала для измерения всех бесчисленных конкретных движений, оно может течь самостоятельно без участия материальных тел. Именно в таком абсолютном пространстве и времени мгновенно распространялась сила тяготения. Воспринимать абсолютное пространство и время в чувственном опыте невозможно. Пространство, время и материя в этой концепции -- это три независимых друг от друга сущности. Концепция дальнодействия господствовала в науке до середины XIX в., концепция абсолютного пространства и времени -- до начала XX в. Работы Ньютона завершили первую глобальную научную революцию, сформировав классическую полицентрическую научную картину мира и заложив фундамент классической науки Нового времени. Классическое естествознание Нового времени Закономерно, что на основе отмеченных достижений дальнейшее развитие естествознания приобретало все больший масштаб и глубину. Идут процессы дифференциации научного знания, сопряженные с существенным прогрессом уже сформировавшихся и появлением новых самостоятельных наук. Тем не менее, естествознание этого времени развивалось в рамках классической науки, имеющей свои специфические черты, которые наложили неизгладимый отпечаток на работу ученых и ее результаты. Важнейшей характеристикой классической науки является механистичность -- представление мира в качестве машины, гигантского механизма, четко функционирующего на основе вечных и неизменных законов механики. Не случайно наиболее распространенной моделью Вселенной был огромный часовой механизм. Поэтому механика была эталоном любой науки, и любую науку пытались построить по ее образцу. Также она рассматривалась и как универсальный метод изучения окружающих явлений. Это выражалось в стремлении свести любые процессы в мире (не только физические и химические, но и биологические и социальные процессы) к простым механическим перемещениям. Такое сведение высшего к низшему, объяснение сложного через более простое называется редукционизмом. Следствиями механистичности стало преобладание количественных методов анализа природы, стремление разложить изучаемый процесс или явление до его мельчайших составляющих, доходя до конечного предела делимости материи. Из картины мира полностью исключалась случайность, ученые стремились к полному завершенному знанию о мире -- абсолютной истине. Еще одной чертой классической науки была метафизичность -- рассмотрение природы как из века в век неизменного, всегда тождественного самому себе неразвивающегося целого. Каждый предмет или явление рассматривался отдельно от других, игнорировались его связи с другими объектами, а изменения, которые происходили с этими предметами и явлениями, были лишь количественными. Так возникла сильная антиэволюционистская установка классической науки. Механистичность и метафизичность классической науки отчетливо проявились не только в физике, но и в химии и биологии. Это привело к отказу от признания качественной специфики Жизни и живого. Они стали такими же элементами в мире-механизме, как предметы и явления неживой природы. Эти черты классической науки наиболее отчетливо проявились в естествознании XVIII в., когда было создано множество теорий, почти забытых современной наукой. Отчетливо проявлялась редукционистская тенденция, стремление свести все разделы физики, химии и биологии к методам и подходам механики. Стремясь дойти до конечного предела делимости материи, ученые XVIII в. создают «учения о невесомых» электрической и магнитной жидкостях, теплороде, флогистоне как особых веществах, обеспечивающих у тел электрические, магнитные и тепловые свойства, а также способность к горению, соответственно. Среди наиболее значимых достижений естествознания XVIII в. следует отметить развитие атомно-молекулярных представлений о строении вещества и формирование основ экспериментальной науки об электричестве. С середины XVIII в. естествознание стало все более проникаться идеями эволюционного развития природы. Значительную роль в этом сыграли труды М.В. Ломоносова, И. Канта, П.С. Лапласа, в которых развивалась гипотеза естественного происхождения Солнечной системы. Влияние идей всеобщей связи и развития, разрушающих метафизичность классической науки, стало еще заметнее в XIX в. Классическая наука, оставаясь в целом метафизической и механистической, готовила постепенное крушение механической картины мира. Если в XVII и XVIII вв. развитие естествознания сосуществовало с религией, и Бог присутствовал в картинах мира в качестве начального Творца, то развитие естествознания в XIX и XX вв. сопровождалось окончательным разрывом науки с религией, развитием технических наук, обеспечившим быстрый прогресс западных цивилизаций. Революционными открытиями естествознания стали принципы неевклидовой геометрии К.Ф. Гаусса, концепция энтропии и второй закон термодинамики Р.Ю.Э. Клаузиуса, периодический закон химических элементов Д.И. Менделеева, теория естественного отбора Ч. Дарвина и А. Р. Уоллеса, теория генетической наследственности Г.И. Менделя, электромагнитная теория Дж. Максвелла. Эти и многие другие не названные нами открытия XIX в. подняли естествознание на качественно новую ступень, превратили его в дисциплинарно организованную науку. Из науки, собиравшей факты и изучавшей законченные, завершенные, отдельные предметы, естествознание в XIX в. превратилось в систематизированную науку о предметах и процессах, их происхождении и развитии. Это произошло в ходе комплексной научной революции середины XIX в. Но все эти открытия оставались в рамках методологических установок классической науки. Не ушла в прошлое, а была лишь скорректирована идея мира-машины, остались неизменными все положения о познаваемости мира и возможности получения абсолютной истины, стремление к редукционизму. Механистические и метафизические черты классической науки были лишь поколеблены, но не отброшены. В силу этого наука XIX в. несла в себе зерна будущего кризиса, разрешить который должна была вторая глобальная научная революция конца XIX -- начала XX в. 4. Глобальная научная революция конца XIX -- начала XX в. Глобальная научная революция начинается с целого ряда замечательных открытий, разрушивших всю классическую научную картину мира. В 1888 г. Г. Герц открыл электромагнитные волны, блестяще подтвердив предсказание Дж. Максвелла. В 1895 г. В. Рентген обнаружил лучи, получившие позднее название рентгеновских, которые представляли собой коротковолновое электромагнитное излучение. Изучение природы этих загадочных лучей, способных проникать через светонепроницаемые тела, привело Дж.Дж. Томсо-на к открытию первой элементарной частицы -- электрона. Важнейшим открытием 1896 г. стало обнаружение радиоактивности А. Беккерелем. Изучение этого феномена началось с исследования загадочного почернения фотопластинки, лежавшей рядом с кристаллами соли урана. Э. Резерфорд в своих опытах показал неоднородность радиоактивного излучения, состоявшего из лучей. Позже, в 1911 г. он смог построить планетарную модель атома. К великим открытиям конца XIX в. также следует отнести работы А.Г. Столетова по изучению фотоэффекта, П.Н. Лебедева о давлении света. В 1901 г. М. Планк, пытаясь решить проблемы классической теории излучения нагретых тел, предположил, что энергия излучается малыми порциями -- квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка (h). Она является одной из немногих универсальных физических констант нашего мира и входит во все уравнения физики микромира. Также было обнаружено, что масса электрона зависит от его скорости. Все эти открытия буквально за несколько лет разрушили то стройное здание классической науки, которое еще в начале 80-х гг. XIX в. казалось практически законченным. Все прежние представления о материи и ее строении, движении и его свойствах и типах, форме физических законов, пространстве и времени были опровергнуты. Это привело к кризису физики и всего естествознания, а роме того, стало симптомом более глубокого кризиса и всей классической науки. Кризис физики стал первым этапом второй глобальной научной революции в науке и переживался большинством ученых очень тяжело. Ученым казалось, что неверным было все то, чему они учились. В лучшую сторону ситуация начала меняться только в 20-е гг. XX в., с наступлением второго этапа научной революции. Он связан с созданием квантовой механики и сочетанием ее с теорией тносительности, созданной в 1906--1916 гг. Тогда начала складываться новая квантово-релятивистская картина мира, в которой открытия, приведшие к кризису в физике, были объяснены. Началом третьего этапа научной революции было овладение атомной энергией в 40-е гг. XX в. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период физика передает эстафету химии, биологии и циклу наук о Земле, начинающих создавать свои собственные научные картины мира. Следует также отметить, что с середины XX в. наука окончательно слилась с техникой, что, в свою очередь, привело к современной научно-технической революции. Главным концептуальным изменением естествознания XX в. был отказ от ньютоновской модели получения научного знания через эксперимент к объяснению. А. Эйнштейн предложил иную модель, в которой гипотеза и отказ от здравого смысла как способа проверки высказывания, становились первичными в объяснении явлений природы, а эксперимент -- вторичным. Развитие эйнштейновского подхода приводит к отрицанию ньютоновской космологии и формирует новую картину мира, в которой логика и здравый смысл перестают действовать. Оказывается, что твердые атомы Ньютона почти целиком заполнены пустотой. Материя и энергия переходят друг в друга. Трехмерное пространство и одномерное время превратились в четырехмерный пространственно-временной континуум. Согласно этой картине мира планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, а потому, что само пространство, в котором они движутся, искривлено. Субатомные явления одновременно проявляют себя и как частицы, и как волны. Нельзя одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подорвал ньютоновский детерминизм. Нарушились понятия причинности, субстанции, твердые дискретные тела уступили место формальным отношениям и динамическим процессам. Таковы основные положения современной квантово-релятиви-стской научной картины мира, которая становится главным итогом второй глобальной научной революции. С ней связано создание современной (неклассической) науки, которая по всем своим параметрам отличается от науки классической. 5. Основные черты современного естествознания как науки Механистичность и метафизичность классической науки сменились новыми диалектическими установками всеобщей связи и развития. Механика больше не является ведущей наукой и универсальным методом изучения окружающих явлений. Классическая модель мира -- часового механизма сменилась моделью мира-мысли, для изучения которого лучше всего подходят системный подход и метод глобального эволюционизма. Метафизические основания классической науки, рассматривавшие каждый предмет в изоляции, вне его связей с другими предметами, как нечто особенное и завершенное, также ушли в прошлое. Теперь мир признается совокупностью разноуровневых систем, находящихся в состоянии иерархической соподчиненности. При этом на каждом уровне организации материи действуют свои закономерности. Аналитическая деятельность, являвшаяся основной в классической науке, уступает место синтетическим тенденциям, системно-целостному рассмотрению предметов и явлений объективного мира. Уверенность в существовании конечного предела делимости материи, стремление найти конечную материальную первооснову мира сменились убеждением в принципиальной невозможности этого и представлениями о неисчерпаемости материи вглубь. Считается невозможным получение абсолютной истины. Истина считается относительной, существующей во множестве теорий, каждая из которых изучает свой срез реальности. Если классическая наука не видела качественной специфики Жизни и Разума во Вселенной, то современная наука доказывает их неслучайность появления в мире. Это на новом уровне возвращает нас к проблеме цели и смысла Вселенной, говорит о запланированном появлении разума, который полностью проявит себя в будущем. Названные нами черты современной науки нашли свое воплощение в новых теориях и концепциях, появившихся во всех областях естествознания. Среди важнейших открытий XX в. -- теория относительности, квантовая механика, ядерная физика, теория физического взаимодействия; новая космология, основанная на теории Большого взрыва; эволюционная химия, стремящаяся к овладению опытом живой природы; генетика, расшифровка генетического кода и др. Но подлинным триумфом неклассической науки, бесспорно, стали кибернетика, воплотившая идеи системного подхода, а также синергетика и неравновесная термодинамика, основанные на методе глобального эволюционизма. Ускорение научно-технического прогресса, связанное с возрастанием темпов общественного развития, привело к тому, что потенциал современной науки, заложенный в ходе второй глобальной научной революции, во многом оказался исчерпанным. Поэтому современная наука снова переживает состояние кризиса, являющегося симптомом новой глобальной научной революции. Начиная со второй половины XX в. исследователи фиксируют вступление естествознания в новый этап развития -- постнеклассический, который характеризуется целым рядом фундаментальных принципов и форм организации. В качестве таких принципов выделяют чаще всего эволюционизм, космизм, экологизм, антропныи принцип, холизм и гуманизм. Эти принципы ориентируют современное естествознание не столько на поиски абстрактной истины, сколько на полезность для общества и каждого человека. Главным показателем при этом становится не экономическая целесообразность, а улучшение среды обитания людей, рост их материального и духовного благосостояния. Естествознание таким образом реально поворачивается лицом к человеку, преодолевая извечный нигилизм по отношению к злободневным потребностям людей. Современное естествознание имеет преимущественно проблемную, междисциплинарную направленность вместо доминировавшей ранее узкодисциплинарной ориентированности естественно-научных исследований. Сегодня принципиально важно при решении сложных комплексных проблем использовать возможности разных естественных наук в их сочетании применительно к каждому конкретному случаю исследования. Отсюда становится понятной и такая особенность постнеклассической науки, как нарастающая интеграция естественных, технических и гуманитарных наук. Исторически они дифференцировались, отпочковывались от некой единой основы, развиваясь длительное время автономно. Характерно, что ведущим элементом нарастающей интеграции становятся науки гуманитарные. Анализ особенностей современного естествознания позволяет отметить такую его принципиальную особенность, как невозможность свободного экспериментирования с основными объектами. Иными словами, реальный естественно-научный эксперимент оказывается опасным для жизни и здоровья людей. Дело в том, что пробуждаемые современной наукой и техникой мощные природные силы при неумелом обращении с ними способны привести к тяжелейшим локальным, региональным и даже глобальным кризисам и катастрофам. Исследователи науки отмечают, что современное естествознание органически срастается с производством, техникой и бытом людей, превращаясь в важнейший фактор прогресса всей нашей цивилизации. Оно уже не ограничивается исследованиями отдельных кабинетных ученых, а включает в свою орбиту комплексные коллективы исследователей самых разных научных направлений. В процессе своей исследовательской деятельности представители различных естественных дисциплин все более отчетливо начинают осознавать тот факт, что Вселенная представляет собой системную целостность с недостаточно понятными законами развития и глобальными парадоксами, в которой жизнь каждого человека связана с космическими закономерностями и ритмами. Универсальная связь процессов и явлений во Вселенной требует комплексного, адекватного их природе изучения и, в частности, глобального моделирования на основе метода системного анализа. В соответствии с этими задачами в современном естествознании все более широкое применение получают методы системной динамики, синергетики, теории игр, программно-целевого управления, на основе которых составляются прогнозы развития сложных природных процессов. Современные представления о глобальном эволюционизме и синергетике позволяют описать развитие природы как последовательную смену рождающихся из хаоса структур, временно обретающих стабильность, а затем вновь стремящихся к хаотическим состояниям. Кроме того, многие природные комплексы предстают как сложноорганизованные, многофункциональные, открытые, неравновесные системы, развитие которых носит малопредсказуемый характер. В этих условиях дальнейшая эволюция сложных природных объектов оказывается принципиально непредсказуемой и сопряжена со многими случайными факторами, могущими стать основаниями для новых форм эволюции. Список используемой литературы 1. Садохин, Александр Петрович Концепции современного естествознания: учебник для студентов вузов, обучающихся по гуманитарным специальностям и специальностям экономики и управления / А.П. Садохин. -- 2-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |