|
Обмен веществ и энергииp align="left">В переходе электронов на высокий энергетический уровень участвуют две содержащиеся в хлоропластах фотосистемы, образованные хлорофиллом и особыми белками -- фотосистема I, активируемая далеким красным светом (-700 нм) и фотосистема II, активируемая красным светом с более высокой энергией (-650 нм), т. е. этот переход происходит в два этапа при использовании света. Реакции, протекающие на этих этапах, получили название световых. Обе фотосистемы связаны между собой системой переноса электронов.На уровне фотосистемы I молекулы хлорофилла передают свои электроны, богатые энергией, через ферредоксин к никотинами-даденин-динуклеотидфосфату (НАДФ), который в результате этого восстанавливается в НАДФЧН ив восстановленной форме уже сам способен самостоятельно поставлять электроны, необходимые для образования глюкозы путем восстановления атмосферной СОу После перехода электронов в НАДФЧН из молекулы хлорофилла в последних остаются своеобразные «бреши». На уровне фотосистемы II богатые энергией возбужденные электроны хлорофилла передаются системе переноса электронов, а образовавшиеся в молекулах хлорофилла «бреши» после «ушедших» электронов замещаются бедными энергией электронами, которые поступают от воды, окисляющейся с образованием молекулярного кислорода. Пройдя через ряд соединений, составляющих цепь переноса электронов, электроны из фотосистемы II, богатые энергией, в конечном итоге замещают утраченные электроны в хлорофилле из фотосистемы I. В цепи переноса электронов осуществляется несколько окислительно-восстановительных реакций, в каждой из которых электроны переходят на более низкий энергетический уровень. Часть энергии, теряемой при переходе через цепь переноса электронов, идет на обеспечение синтеза АТФ из АДФ и неорганического фосфата. Считают, что синтез молекул АТФ связан также с фотосистемой I, в которой имеется циклический поток электронов, заключающийся в том, что электроны, захваченные акцептором, возвращаются хлорофиллу через цитохром В. При этом энергия, высвобождающаяся в реакциях систем переноса электронов, в которых электроны двигаются «вниз», запасается путем синтеза молекул АТФ. В результате световых реакций фотосинтеза образуются высокоэнергетические АТФ и восстановленный НАДФ, которые снабжают энергией последующие, так называемые темновые реакции, протекающие без света и приводящие, в конце концов, к восстановлению атмосфертной COg до Сахаров. Источником энергии здесь является АТФ, а восстанавливающим агентом -- НАДФ-Н, синтезируемые в реакциях фотосинтетического переноса электронов. Процесс восстановления COg начинается с катализируемой рибулозобисфосфаткарбоксилазой фиксации молекул этого соединения молекулами акцептора и сопровождается вступлением атомов углерода в ряд последовательных реакций, что приводит к образованию на каждые шесть фиксированных молекул COg одной молекулы глюкозы, причем связывание одной молекулы COg обеспечивается затратой трех молекул АТФ и двух молекул НАДФ-Н. Как отмечено выше, энергия и электроны, необходимые для темновых реакций, поставляются АТФ и восстановленным НАДФ, образованными в световых реакциях. Таким образом, химическая энергия, генерированная световыми реакциями, стабилизируется в молекулах глюкозы в процессе темновых реакций. В конечном итоге из глюкозы образуется крахмал, который является ее высокомолекулярным полимером, в котором оказываются запасенными по существу как атомы углерода, так и энергия. Полимеризуясь, глюкоза образует также целлюлозу. Подсчитано, что в листьях зеленых растений Земли и в фитопланктоне водоемов ежегодно синтезируется около 150 млрд. тонн органических веществ и выделяется в атомсферу около 200 млрд. тонн кислорода. Фотосинтез имеет большую древность. Предполагают, что круговорот углерода, т. е. фотосинтез, существовал уже 3,5 х 109 лет назад. Хемосинтез -- это синтез органических веществ с помощью энергии, генерируемой окислением неорганических соединений, например, аммиака, оксида железа, сероводорода. Хемосинтез был открыт С. Н. Виноградским в 1889-1890 гг. Его осуществляют бактерии разных видов. Рассмотрим некоторые из наиболее известных примеров, начав с нитрифицирующих бактерий, роль которых была показана С. Н. Виноградским. Нитрифицирующие бактерии являются обитателями почвы. Они получают энергию окислением аммиака, образующегося в почве в результате разложения белков (остатков животных и растений). Реакция окисления аммиака может быть описана следующим уравнением: В этой реакции выделяется энергия в количестве бй2 кДж. Образующаяся в ходе этой реакции азотистая кислота окисляется нитрифицирующими бактериями другого вида до азотной кислоты с выделением энергии в количестве 101 кДж. Эта реакция описывается следующим уравнением: Энергия, освобождаемая в этих реакциях, используется для синтеза органических веществ. Серобактерии получают энергию, окисляя сероводород. Этот процесс можно описать следующим уравнением: энергия Образующаяся в результате этой реакции свободная сера накапливается в цитоплазме серобактерий. Если недостает далее сероводорода, то происходит окисление свободной серы в бактериальной цитоплазме с дальнейшим освобождением энергии: энергия Эта энергия используется для синтеза органических веществ из углекислого газа. Хемосинтезирующие бактерии окисляют также соединения железа и марганца. Считают, что образование залежей железных и марганцевых руд является результатом деятельности микроорганизмов в прошлые геологические эпохи (В. И. Вернадский). Подготовка энергии к использованию (дыхание) У растений источником энергии является солнечный свет, причем ответственными за производство АТФ являются хлоропласты. Энергия, которая оказывается запасенной в основном в углеводах, используется в дальнейшем клетками растений для обеспечения различных биологических реакций. Что же касается клеток животных, то энергия поступает к ним с пищей (сахарами и жирными кислотами). Чтобы эта энергия могла использоваться в процессе жизнедеятельности клеток, она должна быть подготовлена для использования. Подготовка энергии к использованию, т. е. генерирование (извлечение) энергии из пищевых веществ осуществляется в процессе дыхания, под которым понимают окисление (расщепление) молекул-энергоносителей, т. е. «топливных» молекул, при котором роль конечного акцептора электронов выполняет О у а донором электронов является органическое или неорганическое соединение. Процесс подготовки энергии к использованию протекает в три последовательные стадии На первой стадии поступающие в клетки крупные молекулы полисахаридов гидролизуются до простых Сахаров. На этой стадии происходит разложение и других энергоносителей. В частности, жиры разлагаются на глицерол и жирные кислоты, белки гидро-лизуются до аминокислот. Однако на этой стадии высвобождение запасенной в пищевых веществах энергии все еще не происходит. На второй стадии происходит распад малых молекул до еще более простых структур, играющих уже ключевую роль в метаболизме. Глюкоза превращается в ацетильную часть ацетил-КоА, являющегося производным кофермента А. В результате этих реакций образуются молекулы АТФ, но их еще мало. На уровне ацетил-КоА в метаболический путь могут вступать также жирные кислоты и аминокислоты. Наконец, на третьей стадии происходит полное окисление ацетильного компонента ацетил-КоА до СОу На этой стадии образуется основная часть АТФ. Процесс генерирования энергии в животных клетках (извлечения ее из субстрата) осуществляется с участием митохондрий и начинается с гликолиза (от греч. glycos -- сахар и lysis -- растворение), который представляет собой окисление глюкозы, заканчивающееся превращением этого углевода в пировиноградную кислоту и образованием АТФ. Уже давно установлено, что для дыхания в качестве акцептора электронов необходим кислород. Однако на первых этапах расщепления Сахаров кислорода не требуется. Окисление глюкозы начинается в анаэробных условиях дыхания (при отсутствии кислорода) с частичного расщепления ее шестиуглеродной молекулы и заканчивается образованием двух трехуглеродных молекул пировиноградной кислоты Превращения глюкозы можно описать следующим уравнением: C6H12O6 + 2Ф + 2АДФ 2СН3СНОНСООН + 2АТФ + 2Н2О У большинства организмов гликолиз служит одним из центральных метаболических путей и состоит из десяти последовательных химических реакций, протекающих в цитоплазме (цитозол). Вначале глюкоза превращается через глюкозо-6-фосфат во фрукто-зо-1,6-дифосфат в результате фосфорилирования, катализируемого гексокиназой и фосфофруктозокиназой. Поскольку эти реакции еще сами нуждаются в АТФ, они являются подготовительными в образовании АТФ. В частности, на превращение каждой молекулы глюкозы в этих реакциях затрачивается по две молекулы АТФ. На втором этапе фруктозо-1,6-дифосфат превращается с помощью альдолазы в дигидроксиацетонфосфат и глицераль-дегид-3-фосфат, которые взаимопревращаемы в реакциях, катализируемых триозофосфатизомеразой. Затем глицеральдегид-3-фосфат окисляется и фосфорилизуется, в результате чего превращается в высокоэнергетическое фосфатное соединение 1,3-дифосфоглицерат (1,3-БФГ). Это превращение катализируется глицеральдегид-3-фосфатдегидрогеназой. Поскольку 1,3-БФГ-ацилфосфат обладает высоким потенциалом переноса фосфатной группы, эта особенность используется для генерирования АТФ. Поэтому дальше происходит перенос фосфатной группы от ацилфосфатной группы 1,3-БФГ-ацилфосфата на АДФ, катализируемый фосфоглицераткиназой. В результате этого образуется молекула АТФ и 3-фосфоглицерат, т. е. на этом этапе происходит образование энергии. Последний этап гликолиза связан с превращением 3-фосфоглицерата в пируват и образованием второй молекулы АТФ. Этот этап осуществляется в реакциях трех типов. Первая реакция заключается во внутримолекулярной перестройке, связанной с превращением 3-фосфоглицера-та в 2-фосфоглицерат, катализируемым фосфоглицеромутазой. В результате этой реакции происходит перемещение фосфатной группы. Во второй реакции происходит дегидратация 2-фосфоглицерата, катализируемая енолазой, в результате чего образуется фосфоенолпируват. При этом повышается потенциал переноса фосфатной группы енолфосфат обладает высоким потенциалом переноса фосфатной группы. В третьей (заключительной) реакции этого этапа гликолиза происходит перенос фосфатной группы, от фосфоенолпирувата к АДФ, катализируемый пируваткиназой. Это приводит к образованию пирувата и АТФ (второй молекулы). При анаэробных условиях пировиноградная кислота превращается в молочную кислоту (лактат) или в этиловый спирт (этанол), или в пропионовую кислоту. Этот анаэробный процесс называют еще брожением. В данном случае речь идет о молочнокислом, спиртовом и пропионовом брожении (соответственно). Молочная кислота образуется из пирувата при метаболизме ряда микроорганизмов, а также в клетках мышц многоклеточных организмов. Суммарная реакция превращения глюкозы в лактат имеет следующий вид: НАДН образуется в результате окисления глицеральдегид-3-фосфата, который используется при восстановлении пирувата. В процессе превращения пировиноградной кислоты в лактат происходит регенерирование НАД+, что поддерживает непрерывность гликолиза в анаэробных условиях. Этиловый спирт образуется из пирувата при метаболизме дрожжей и некоторых других микроорганизмов спиртового брожения. Суммарная реакция превращения глюкозы в этанол имеет следующий вид: Глюкоза + 2Pi + 2АДФ + 2Н+ 2 этанол + 2СО2 + 2АТФ + 2Н20. Восстановление ацетальдегида в этиловый спирт сопровождается регенерированием НАД+. Анаэробное дыхание с точки зрения производительности не является эффективным процессом, т. к. при анаэробном превращении глюкозы в этанол или лактат освобождается лишь небольшое количество энергии. Большая часть энергии, запасенная в глюкозе, продолжает затем оставаться запасенной уже в молекулах этанола. Как видно, последовательность реакций, в процессе которых глюкоза превращается в пируват, сходна в клетках всех видов у всех организмов. Биологическое значение гликолиза заключается в том, что он генерирует молекулы АТФ. В результате распада глюкозы образуются строительные блоки, используемые для синтеза клеточных структур. Оба эти процесса регулируются скоростью превращения глюкозы в пируват. Однако роль пирувата в генерировании энергии обмена веществ различна в разных клетках и разных организмах. У аэробных организмов гликолиз, осуществляемый в цитозоле выполняет роль своего рода процесса-прелюдии к дальнейшему окислению, ибо при аэробном дыхании (в присутствии кислорода) окисление идет дальше и осуществляется уже в митохондриях в так называемом цикле Кребса (цикле трикарбоновых кислот или цикле лимонной кислоты) и в цепи переноса электронов, цикл Кребса является конечным путем окисления топливных молекул, причем не только глюкозы и других углеводов, но и жирных кислот и аминокислот. Следовательно, «топливом» для окисления в митохондриях являются пируват и жирные кислоты. Включение в этот окислительный путь осуществляется на уровне кофермента (ацетил-КоА), т. е. происходит с образования ацетил-КоА в митохондриальном матриксе, в результате окислительного декарбоксилирования пирувата или распада жирных кислот до двухуглеродных групп. Ацетил-КоА обладает высоким потенциалом переноса ацетильных групп. Следовательно, топливные молекулы вступают в цикл Кребса в виде ацетил-КоА. Непрерывность же снабжения окислительных процессов «топливом» обеспечивается запасанием животными клетками липидов, являющихся главным ресурсом жирных кислот, а также гликогена, являющегося источником глюкозы. Цикл Кребса действует только в аэробных условиях и начинается с конденсации ацетил-КоА (C2) и оксалоацетата (C4 с образованием цитрата (С6), изомеризация которого приводит к изоцитрату (C6). Затем следует окислительное декарбоксилирование изоцитрата и образование -оксоглутарата (С5), после чего последний подвергается окислительному декарбоксилированию (выделяется вторая молекула CO2 в сукцинил-КоА (С4). В следующей реакции происходит расщепление тиоэфирной связи сукцинил-КоА в присутствии пирофосфата (Pi), в результате чего образуется сукцинат и генерируется высокоэнергетические фосфатные связи в форме ГТФ и АТФ. Сукцинат потом окисляется в фумарат (С4), а последний гидратируется в малат. В последующей реакции происходит окисление малата, что приводит к регенерированию оксалоацетата (C4). Следовательно, в цикл Кребса вступают два атома углерода в виде ацетил-КоА и такое же количество атомов углерода покидают этот цикл уже в виде CO2 в последовательных реакциях декарбоксилирования, которые катализируются дегидрогеназами. В результате четырех окислительно-восстановительных реакций цикла Кребса происходит перенос трех пар электронов над НАД и одной пары электронов на ФАД. Восстановленные этим путем переносчики электронов НАД и ФАД подвергаются затем окислению уже в цепи переноса электронов, в результате которого генерируется одиннадцать молекул АТФ. Одна высокоэнергетическая связь генерируется непосредственно в цикле Кребса. Таким образом, на каждый двухуглеродный фрагмент, полностью окисляемый до Н2О и СО2, генерируется двенадцать высокоэнергетических фосфатных связей. Цикл Кребса подвержен регуляции; его скорость зависит от потребности в АТФ других метаболических реакций. Важное значение имеет регуляция синтеза цитратсинтазы, изоцитратдегидроге-назы и оксоглутаратдегидрогеназы. Биологическое значение цикла Кребса заключается не только в том, что он является завершающим этапом в генерировании энергии, но и в том, что он «поставляет» промежуточные продукты для биосинтеза. Цикл Кребса действует только в аэробных условиях по той причине, что для него необходимы НАД и ФАД, регенерирование которых происходит при переносе электронов НАДН и ФАДH2 на О2 по цепи транспорта электронов, сопровождаемом одновременным образованием АТФ Поскольку у аэробных организмов единственным акцептором электронов является О2, а электроны не переносятся от топливных молекул и продуктов их реакций прямо на O2, топливные молекулы и продукты их распада переносят электроны к пиримидиннуклеотидам или флавинам, являющимся переносчиками. Главным акцептором электронов при окислении топливных молекул является никотинамидадениндинуклеотид (НАД+, реакционноспособной частью которого является никотинамидное кольцо. Последнее присоединяет ион водорода и два электрона. Восстановленной формой этого переносчика является НАДН. Окисление последнего дает три молекулы АТФ. Вторым акцептором электронов является ФАД (флавинадениндинуклеотид), реакционноспособной частью которого является изоаллоксазиновое кольцо, которое тоже присоединяет два электрона. Восстановленной формой ФАД является ФАДH2. Окисление последнего дает две молекулы АТФ. Таким образом, главными переносчиками являются НАДН и ФАД-Hg, которые содержат по паре электронов с высоким потенциалом и которые доставляют свои высокоэнергетические электроны к О3 по цепи транспорта электронов, также локализованной в митохондриях. Этот перенос сопровождается образованием АТФ из АДФ и пи-рофосфата (Рi), происходит на митохондриальных мембранах и носит название окислительного фосфорилирования. Оно было открыто в 1931 г. В. А. Энгельгардтом (1894-1984). Следовательно, окислительное фосфорилирование -- это процесс образования АТФ, сопряженного с переносом электронов по цепи транспорта (переносчиков) от НАДН или ФАДH2 к O2 через многие другие переносчики, в частности питохромы. В процессе окислительного фосфорилирования генерируется 32 молекулы АТФ из всех 36 молекул АТФ, генерируемых в процессе окисления глюкозы до СО2 и Н2О. Многоступенчатость транспорта электронов от НАДН или ФАДН2 к О2 по цепи многочисленных переносчиков сопровождается выбросом протонов из митохондриального матрикса и генерированием на внутренней митохондриальной мембране протон-движущей силы (мембранного потенциала), измеряемой в милливольтах. На внутренней поверхности митохондриальной мембраны протондвижущая сила равна 220 микровольтам. В процессе обратного перехода протонов в митохондриальный матрикс происходит синтез АТФ. Следовательно, окисление НАДН и ФАДH2 и фосфорилирование АДФ в АТФ сопряжены по той причине, что они обеспечиваются протонным градиентом через внутреннюю мембрану митохондрий. Это сопряжение называют дыхательным контролем. Потенциальные возможности окисления в митохондриях очень большие, т. к. последние обеспечивают производство почти всего АТФ в клетках млекопитающих. Использование энергии в клетках Благодаря фотосинтезу и дыханию световая энергия Солнца конвертируется в форму, которая может использоваться клетками для обеспечения всех выполняемых ими функций Основными видами биологической работы в клетках являются транспорт веществ через мембраны, биологический синтез и механическая работа. Обеспечение этих видов биологической работы в клетках основано на цикле АТФ-АДФ. Для обеспечения энерготребующих функций клеток используются высокоэнергетические связи АТФ. В результате реакции в конечном итоге освобождается неорганический фосфат. АДФ рефосфорилируется в АТФ в процессе реакций катаболизма. Большое место в катаболизме занимает биосинтез различных соединений, который в клетках происходит непрерывно. Больше того, клетки обладают гигантской биосинтетической способностью в отношении всех веществ. Например, одиночная клетка Е. coli способна за время от одного деления до другого (в процессе одного клеточного цикла) синтезировать огромное количество молекул различных соединений Центральное место в биосинтезе принадлежит синтезу белков (см. гл. XII). Синтез белков, нуклеиновых кислот и других химических соединений необходим для поддержания живых клеток. Во все биосинтезы вовлечен АТФ. Больше того, между биосинтезом и деградацией химических соединений наблюдается взаимодействие, причем это взаимодействие обеспечивается АТФ Одним из обычных примеров механической работы является мышечное сокращение, в котором существенную роль играет АТФ. Метаболизм на уровне организмов По характеру ассимиляции различают автотрофные, гетеротрофные и миксотрофные организмы. Автотрофные (от греч. autos -- сам, trophe -- пища), или самопитающиеся организмы, -- это организмы, способные синтезировать органические соединения из неорганических (углекислого газа, воды и неорганических соединений азота и серы). В зависимости от источника потребляемой энергии автотрофы классифицируют на фотосинтезирующие и хемосинтезирующие организмы. Первые используют световую энергию, тогда как вторые -- энергию экзотермических химических реакций (в ходе превращения неорганических соединении), т. е. энергию, образующуюся при окислении различных неорганических соединений (водорода, сероводорода, аммиака и др.). Фотосинтезирующими организмами являются растения, в листьях которых осуществляется фотосинтез. Зеленые растения образуют углеводы, которые передвигаются из листьев в корни, где вступают в реакции с аммиаком и образуют аминокислоты. Хемосинтезирующими организмами являются микроорганизмы -- нитрифицирующие, серобактерии, водородные бактерии и железобактерии. Свободный азот усваивают азотфиксирующие бактерии. Гетеротрофные (от греч. heteros -- другой, trophe -- пища) организмы -- это организмы, которые нуждаются в готовых органических соединениях. Ими являются животные, а также микроорганизмы. Гетеротрофные организмы получают энергию путем окисления органических соединений Для животных характерен голозойный способ гетеротрофного питания, заключающийся в потреблении пищи в виде твердых частиц с последующей ее механической и химической переработкой. Напротив, для микроорганизмов характерен осмотическим способ гетеротрофного питания. При этом способе питание происходит растворенными питательными веществами путем поглощения их всей поверхностью тела. Миксотрофные (от лат. mixtus -- смешанный) организмы -- это организмы, способные как к синтезу органических веществ, так и к использованию их в готовом виде. Например, эвглена зеленая на свету является автотрофом, в темноте -- гетеротрофом. По характеру диссимиляции различают аэробные и анаэробные организмы. Аэробные (от греч. aer -- воздух) организмы для дыхания (окисления) используют свободный кислород. Аэробами является большинство ныне живущих организмов. Напротив, анаэробы окисляют субстраты, например, сахара в отсутствие кислорода, следовательно, для них дыханием является брожение. Анаэробами являются многие микроорганизмы, гельминты. Например, динитри-фицирующие анаэробные бактерии окисляют органические соединения, используя нитриты, являющиеся неорганическим окислителем. Автотрофы и гетеротрофы связаны между собой питанием (пищевыми цепями) и энергетически, в результате чего существование одних из них зависит от других и наоборот. Например, кислородные потребности аэробоз полностью зависят от автотрофов (зеленых растений). Последние используют СОу поставляемый в окружающую среду гетеротрофами. Все живые существа обладают системами, обеспечивающими превращение энергии и способны понижать энтропию. Жизнедеятельность организмов с различными типами питания создает круговороты веществ в природе Происхождение типов обмена Обсуждение вопросов, касающихся происхождения типов обмена, очень осложнено незнанием первых этапов в развитии жизни. Поэтому формулируемые гипотезы не доступны экспериментальной проверке. Тем не менее предполагают, что когда возникла жизнь и когда ресурсы «первичного бульона» были исчерпаны, то у первых клеток возникла необходимость синтезировать ферменты, катализирующие образование органических молекул. Следовательно, селективные преимущества далее приобрели клетки, способные к биосинтезу. Со временем у клеток возникли различные метаболические пути. Предполагают, что центральным был метаболизм в виде гликолиза, ведущего к синтезу АТФ. Считают, что первыми организмами, сходными, вероятно, с бактериями, были гетеротрофные анаэробы, способные использовать органические вещества абиогенного происхождения. Формирование цепи транспорта электронов позволило анаэробным бактериям использовать в качестве источника энергии те органические соединения, которые не подвергаются сбраживанию. Первые гетеротрофы дали начало автотрофам, которые тоже были анаэробами. Позднее среди автотрофов появились организмы, способные осуществлять фотосинтез, что повело около 3,5--2 млрд. лет назад к превращению СО2 в органическое соединение и к накоплению в атмосфере кислорода. Предполагают, что первой стадией в возникновении фотосинтеза у примитивных организмов явился простейший синтез АТФ. Более поздние организмы возможно использовали водород для синтеза углеводов, после чего появились организмы, которые оказались способными использовать воду в качестве источника водорода и продуцировать кислород, т. е. уже быть фотосинтезирующими. Предполагают, что первые автотрофы использовали ферментные системы, развитые гетеротрофами. Поэтому на фотосинтез следует смотреть как на процесс, усложнявшийся в ходе исторического развития. В конечном итоге фотосинтезирующие организмы заселили все водоемы, а потом и сушу. Углеводы являются начальным продуктом фотосинтеза и сырым материалом для всех других структур, синтезируемых в растениях. Оценивая значение фотосинтеза, можно заключить, что его эволюция привела к двум очень важным результатам. Первый результат заключается в том, что благодаря фотосинтезу возникло огромное количество видов организмов, которые оказались независимыми от пищи (корма) органического происхождения. Это создало условие для их процветания. Что же касается второго результата, то он заключается в том, что благодаря кислороду, освобождаемому в процессе биосинтеза, многие организмы стали извлекать из потребляемой пищи (корма) больше энергии, стали лучше компенсироваться их энергетические затраты. Благодаря обилию кислорода и органических молекул возник процесс адаптации цепи транспорта электронов с НАДФ на кислород, что способствовало появлению аэробного типа диссимиляции. Предполагают далее, что первыми аэробами были зеленые растения и хемосинтезирующие микроорганизмы. Особый вопрос связан с происхождением ферментов. Несомненно, что они являются эволюционным приобретением организмов. Предполагают, что в ходе эволюции ферменты усложнялись постепенно. Однако убедительных объяснений механизма возникновения первых ферментов нет, также как и нет объяснений характера первых ферментативных реакций. Список литературы: · Биология. В 2 кн. (Учебник) Под ред. В.Н. Ярыгина (2003, 5-е изд., 432с., 3 · Микробиология. (Учебник) Гусев М.В., Минеева Л.А. (2003, 464с.) · Биология с основами экологии. (Учебник) Пехов А.П. 2000, Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |