Розділ 1. Загальна характеристика гемоглобінової системи в крові риб та її роль в підтриманні гомеостазу організму
Розділ 2. Стан системи гемоглобіну (крові) за дії екстремальних факторів довкілля (ЛТ посучасним пестицидах, по крові риб), температури, кислотних дощів
2.1 Морфологічні, фізіологічні та біохімічні зміни в організмі гідробіонтів за дії пестицидів
2.2 Ступінь прояву токсичної дії пестицидів на риб залежно від їх концентрації
2.3 Залежність стійкості риб до токсикантів від температури середовища та пори року
2.4 Вікові та видові особливості стійкості та чутливості риб до токсикантів водного середовища
2.5 Вплив гідрохімічних показників при визначенні токсичного ефекту
Розділ 3. Токсикологічна характеристика інсектицидів
Розділ 4. Матеріали і методи досліджень
Розділ 5. Результат теоретичного аналізу даних
Висновки
Список використаних джерел
ВступРозвиток сільського господарства та загальне зростання антропічного впливу на водне середовище загострило проблему виживання водних тварин і, зокрема, риб, в умовах пестицидного навантаження. Забруднення внутрішніх водойм, в тому числі рибогосподарських, гербіцидами є одним з лімітуючих чинників функціонування модельних водних екосистем та їх біопродуктивності. У зв'язку з цим вивчення фізіолого-біохімічних механізмів адаптації на рівні обмінних процесів у риб, а також їх енергетичне забезпечення у відповідь на токсичний вплив пестицидів є однією з головних умов розробки ефективних засобів та способів підвищення стійкості організму риб до змінених умов існування.Знання характеру особливостей надходження, розподілу, накопичення пестицидів в органах та тканинах, біохімічних змін в результаті отруєння може бути використане для пояснення механізмів адаптації риб до токсикантів, виявлення причин загибелі гідробіонтів у природних водоймах та обґрунтування методів контролю забруднення навколишнього середовища.Мета і завдання дослідження. Метою роботи було структно-функціональні характеристики гемоглобінової системи коропа лускатого (CyprinuscarpioL).а) вміст Нв та його форм;б) активність ферменту мет-гемоглобін-редуктази;в) спорідненість Нв до кисню;г) швидкість лужної деструкції Нв.Об'єкт дослідження: короп лускатий (CyprinuscarpioL).Предмет дослідження: вплив інсектициду „Престиж” на структурно-функціональні параметри гемоглобіну крові коропа у токсичних умовах.Для досягнення мети вирішувались наступні завдання:теоретично дослідити морфологічні зміни гемоглобінової системи риб у відповідь на існування в умовах інсектицидного навантаження;проаналізувати структурно-функціональні зміни в гемоглобіновій системі коропа під впливом токсичних концентрацій інсектициду „Престиж", а саме:Методи дослідження: спектрофотометричний аналіз (СФ-26).Розділ 1. Загальна характеристика гемоглобінової системи в крові риб та її роль в підтриманні гомеостазу організмуГоловною відмінністю кровоносної системи риб від інших хребетних є наявність одного кола кровообігу і двухкамерного серця, наповненого венозною кров'ю (за винятком двоякодишних і кістеперих).Серце складається з одного шлуночка й одного передсердя і міститься в навколосерцевій сумці, відразу за головою, за останніми зябровими дугами, тобто в порівнянні з іншими хребетними зміщено вперед. Перед передсердям є венозна пазуха, або венозний синус, зі спадаючими стінками; через цю пазуху кров надходить у передсердя, а з нього - у шлуночок [14].Кількість крові в риб відносно менше, ніж у всієї іншої хребетної тварин (1,1 - 7,3% від маси тіла, у тому числі в коропа 2,0-4,7%, сома - до 5, щуки - 2, кети - 1,6, тоді як у ссавців - 6,8% у середньому). Це зв'язано з горизонтальним положенням тіла (немає необхідності проштовхувати кров вгору) і меншими енергетичними витратами в зв'язку з життям у водному середовищі. Вода є гіпогравітаційним середовищем, тобто сила земного притягання тут майже не позначається.Морфологічна і біохімічна характеристика крові різна в різних видів у зв'язку із систематичним положенням, особливостями середовища існування і способу життя. Усередині одного виду ці показники коливаються в залежності від сезону року, умов змісту, віку, статі, стану особей.Кількість еритроцитів у крові риб менше, ніж у вищих хребетних, а лейкоцитів, як правило, більше. Це зв'язано, з одного боку, зі зниженим обміном риб, а з іншого боку - з необхідністю підсилити захисні функції крові, тому що навколишнє середовище багате хвороботворними організмами.Кількість еритроцитів у риб коливається в широких межах, насамперед у залежності від рухливості риб: у коропа - 0,84-1,89 млн. /мм3 крові, щуки - 2,08, пеламіди-4,12 млн. /мм3. Кількість лейкоцитів складає в коропа 20-80, у йорша - 178 тис. /мм3. Клітки крові риб відрізняються великою розмаїтістю, ніж у іншої групи хребетних. У більшості видів риб у крові мають і зернисті (нейтрофіли, еозинофіли) і незернисті (лімфоцити, моноцити) форми лейкоцитів. Серед лейкоцитів переважають лімфоцити, на частку яких приходиться 80-95%, моноцити складають 0,5-11%; серед зернистих форм переважають нейтрофіли-13-31%; еозинофіли зустрічаються рідко (у коропових,).Співвідношення різних форм лейкоцитів у крові коропа залежить від віку й умов вирощування.Загальна кількість лейкоцитів у крові риб сильно змінюється протягом року, у коропа воно підвищується влітку і знижується узимку при голодуванні в зв'язку зі зниженням інтенсивності обміну [4].Здатність гемоглобіну крові забирати кисень з води в різних риб неоднакова. У швидкоплаваючих риб - макрелі, тріски, форелі - гемоглобіну в крові багато, і вони дуже вимогливі до вмісту кисню у воді. У багатьох морських придонних риб, а також вугра, коропа, карасів і деяких інших, навпаки, гемоглобіну в крові мало, але він може зв'язувати кисень із середовища навіть з незначною кількістю кисню.Чутливість риб до змін температури води також пов'язана з властивостями гемоглобіну: при підвищенні температури води потреба організму в кисні збільшується, але здатність гемоглобіну зв'язувати його падає.Пригнічує здатність гемоглобіну зв'язувати кисень і вуглекислота: для того щоб насиченість киснем крові досягла 50% при вмісті у воді 1% О2, необхідний тиск кисню в 666,6 Па, а у відсутності О2 для цього досить тиску кисню майже вдвічі меншого - 266,6 - 399,9 Па.Кров, будучи внутрішнім середовищем організму, містить у плазмі білки, вуглеводи (глікоген, глюкоза й ін) і інші речовини, що грають велику роль в енергетичному і пластичному обміні, у створенні захисних властивостей. Рівень цих речовин у крові залежить від біологічних особливостей риб і абіотичних факторів, а рухливість складу крові дозволяє використовувати її показники для оцінки фізіологічного стану.Кісткового мозку, що є основним органом утворення формених елементів крові у вищих хребетних, і лімфатичних залоз (вузлів) у риб немає.Кровотворення в риб у порівнянні з вищими хребетними відрізняється рядом особливостей:1. Утворення клітин крові відбувається в багатьох органах. Вогнищами кровотворення в риб є: зябровий апарат (ендотелій судин і ретикулярний синцитій, зосереджений у основі зябрових пелюстків), кишечник (слизувата), серце (епітеліальний шар і эндотелий судин), нирки (ретикулярний синцитій між канальцами), селезінка, судинна кров, лимфоїдний орган (скупчення кровотворної тканини - ретикулярного синцитію - під дахом черепа). На відбитках цих органів видні кров'яні клітки різних стадій розвитку [12].2. У кісткових риб найбільше активно гемопоез відбувається в лімфоїдних органах, нирці і селезінці, причому головним органом кровотворення є нирки (передня частина). У нирках і селезінці відбувається як утворення еритроцитів, лейкоцитів, тромбоцитів, так і розпад еритроцитів.3. Наявність у периферичній крові риб і зрілих і молодих еритроцитів є нормальним і не служить патологічним показником на відміну від крові дорослих ссавців.4. В еритроцитах, як і в інших водних тварин, на відміну від ссавців є ядро.Селезінка риб розташовується в передній частині порожнини тіла, між петлями кишечника, але незалежно від нього. Це щільне компактне темно-червоне утворення різної форми (кулястої, стрічкоподібної), але частіше витягнутої. Селезінка швидко змінює обсяг під впливом зовнішніх умов і стану риби. У коропа вона збільшується узимку, коли в зв'язку зі зниженим обміном речовин потік крові сповільнюється і вона скапливается в селезінці, печінці і бруньках, що служать депо крові, теж спостерігається при гострих захворюваннях. При недоліку кисню, перевезенню і сортуванню риби, облові ставків запаси крові із селезінки надходять у кров'яне русло. Зміна розмірів селезінки в зв'язку з періодами посиленої активності встановлено на струмковій і райдужній форелях і інших рибах.Одним з найважливіших факторів внутрішнього середовища є осмотичний тиск крові, тому що від нього залежить значною мірою взаємодія крові і клітин тіла, водний обмін в організмі і т.д.Лімфатична система риб не має залоз. Вона представлена поруч парних і непарних лімфатичних стовбурів, у які лімфа збирається з органів і по них же виводиться в кінцеві ділянки вен, зокрема в Кювьеровы протоки.Гемоглобінова буферна система - сама могутня буферна система крові. Вона в 9 разів могутніше бікарбонатного буфера; на її частку приходиться 75% від усієї буферної ємності крові [17].Участь гемоглобіну в регуляції рН крові пов'язана з його роллю в транспорті кисню і вуглекислого газу. Константа дисоціації кислотних груп гемоглобіну міняється в залежності від його насичення киснем. При насиченні киснем гемоглобін стає більш сильною кислотою (НнbО2). Гемоглобін, віддаючи кисень, перетворюється в дуже слабку органічну кислоту (Ннb).Отже, гемоглобінова буферна система складається з неіонізованого гемоглобіну Ннb (слабка органічна кислота, донор протонів) і калієвої солі гемоглобіну Кнb (сполучена основа, акцептор протонів). Точно так само може бути розглянута оксигемоглобінова буферна система. Система гемоглобіну і система оксигемоглобіну є взаємоперетворюваними системами й існують як єдине ціле. Буферні властивості гемоглобіну насамперед обумовлені можливістю взаємодії реагуючих сполук з калієвою сіллю гемоглобіну з утворенням еквівалентної кількості відповідної калійної солі кислоти і вільного гемоглобіну:Кнb + Н2СO3 > КНСО3 + Ннb.Саме в такий спосіб перетворення калійної солі гемоглобіну еритроцитів у вільний Ннb з утворенням еквівалентної кількості бікарбонату забезпечує підтримка рН крові в межах фізіологічно припустимих величин, незважаючи на надходження у венозну кров величезної кількості вуглекислого газу й інших киснуло реагуючих продуктів обміну.Гемоглобін (Ннb), потрапляючи в капіляри легень, перетворюється в окси-гемоглобин (НнbО2), що приводить до деякого підкислення крові, витисненню частини Н2О з бікарбонатів і зниженню лужного резерву крові. Перераховані буферні системи крові відіграють важливу роль у регуляції кислотно-основної рівноваги. Як відзначалося, у цьому процесі, крім буферних систем крові, активну участь приймають також система дихання і сечо-статева система.В умовах зимового голодування в організмі риб розвивається температурний та ресурсодефіцитний стрес. Відповіддю на нього є збільшення протягом зимівлі в 1,5 рази вмісту еритроцитів та величини гематокриту. Загальний вміст гемоглобіну знижуєтся в 2 рази, що корелює з даними про пряму залежність вмісту гемоглобіну в коропа від температури води. Це пояснюється зниженням в 4 рази активності мітохондріальної д-АЛС, яка лімітує швидкість біосинтезу гема. Загалом, дані зміни погіршують в період зимівлі забезпечення тканин киснем.В кінці березня на початку квітня поряд з зниженням в 4 рази вмісту оксиформи гемоглобіну рівень дезоксиформи відносно лютого в 3 рази зростає. Вміст метгемоглобіну при цьому збільшується в 2 рази, що співвідноситься з різким зниженням спорідненості гемоглобіну до кисню. З даними змінами корелює швидкість дисоціації оксигемоглобіну. Максимальна швидкість дисоціації виявлена в жовтні, коли спорідненість є мінімальною, а мінімальна - в червні, коли спорідненість є максимальною. Сезонна динаміка дисоціації оксигемоглобіну підтверджує підвищення спорідненості гемоглобіну до кисню в період зимівлі [6].Існує взаємозв'язок між підвищенням спорідненості гемоглобіну до кисню, зниженням рівня метформи та зростанням вмісту його оксиформи. Значне зниження вмісту окси - та підвищення кількості метформи гемоглобіну, а також зміщення кривої дисоцації оксигемоглобіну вправо в кінці зимівлі свідчить про розбалансування системи транспорту кисню в цей період.Оскільки біохімічна адаптація здійснюється як шляхом модифікації макромолекул, так і на рівні регуляторних факторів клітини, вченими досліджено регуляцію функціональної активності гемоглобіну за допомогою АТФ, який є основним модулятором спорідненості гемоглобіну риб до кисню. Протягом зимівлі рівень останнього знижувався в 2 рази, що співставляється с відміченим нами фактом збільшення спорідненості гемоглобіну коропа до кисню. Це узгоджується з зниженням в риб за низьких температур обміну речовин, рухливості, зменшенням споживання ними кисню та активацією гліколізу.Перебудови енергетичного метаболізму відображаються на функціонуванні системи транспорту кисню шляхом впливу на структурно-функціональний стан гемоглобіну. Однією з суттєвих характеристик останнього є кінетика його лужної денатурації [7].Найстійкішим гемоглобін є в червні (період активного живлення). Найзначнішою його денатурація є в жовтні та лютому, що є показником низької захищеності молекул від денатуруючих агентів.В формуванні вищих рівнів структури білків важливу роль відіграють амідні групи. Протягом зимівлі амідованість гемоглобіну підвищується в 2 рази. Амідованість білків плазми крові знижується в середині зимівлі, але зростає з лютого по квітень. Відомо, що з другої половини зимівлі як ендогенне джерело живлення в риб використовуються саме білки, в зв'язку з чим амідування гемоглобіну та білків плазми протягом зимівлі можна вважати засобом їх адаптивного захисту від протеолізу. Додатковим механізмом такого захисту є глікування. Нами виявлено, що в середині зимівлі глікування гемоглобіну знижується, а в березні зростає майже в 3 рази. Білки плазми в часовій динаміці глікуються навпаки. Ввважаємо, що ступінь глікування може бути фактором, який з одного боку за несприятливих умов стабілізує білкові молекули, а з іншого - регулює інтенсивність вуглеводного обміну шляхом вилучення моносахаридів з окиснювального пулу. Збільшення ступеня амідування білків супроводжується зниженням відсотка їх глікування і навпаки. Ймовірно, що за рахунок цього максимально ефективно здійснюється стабілізація гемоглобіну. Одночасно з цим певну роль в захисті гемоглобіну під час зимівлі риб відіграють і сульфгідрильні групи. Проте їх роль, порівняно з описаними механізмами, нижча, оскільки вміст -SH груп протягом зимівлі змінюється мало. Незначну роль в даному процесі відіграє також і метгемоглобінредуктаза еритроцитів, активність якої зимою знижується в 2 рази, що корелює з зростанням вмісту метгемоглобіну.Компенсаторно-адаптивними реакціями на токсичну дію можна вважати збільшення числа еритроцитів, активацію еритропоетичної активності тканин, зростання активності метгемоглобінвідновлюючої НАДH-залежної метгемоглобінредуктази, одного з основних ферментів блокування окислення гемового заліза [9].Збільшення спорідненості гемоглобіну до кисню може бути фактором підтримання функціонально необхідного рівня вільного кисню (дія іонів свинцю окремо та спільно з аміаком, іонів цинку, закислення і залуження води, вплив фенолу) та засобом запобігання неконтрольованих перекисних процесів.Розділ 2. Стан системи гемоглобіну (крові) за дії екстремальних факторів довкілля (ЛТ посучасним пестицидах, по крові риб), температури, кислотних дощів2.1 Морфологічні, фізіологічні та біохімічні зміни в організмі гідробіонтів за дії пестицидівКомплексна взаємодія природних явищ, хімічних процесів та людських дій призводить до появи достатньо високих концентрацій пестицидів у поверхневих водах, що викликає занепокоєння через шкідливу дію на водні організми, міграцію у харчових ланцюгах, небезпеку для здоров'я людини. Тому в наш час важливу роль відіграє вивчення біохімічних та фізіологічних показників життєдіяльності гідробіонтів, і зокрема риб, у відповідь на отруєння. Знання характеру змін в органах і тканинах в результаті отруєння може бути використане для пояснення механізмів адаптації риб до токсикантів, виявлення причин загибелі гідробіонтів у природних водоймах та обґрунтування методів контролю забруднення навколишнього середовища [5].Як відомо, існує матеріальна кумуляція (накопичення в організмі токсичної речовини) та функціональна (викликані токсикантом ефекти). Здатність пестицидів до матеріальної кумуляції описано нами у попередньому розділі. Функціональна ж кумуляція здатна спричиняти морфологічні, фізіологічні та біохімічні зміни в органах і тканинах, проявляючись навіть при дії препаратів, що швидко руйнуються та виводяться з організму. Як відомо, функціональна кумуляція в органічному світі зустрічається частіше, оскільки після кожного попадання отрути в організм зберігаються наслідки попередньої реакції, які, накладаючись на наступну, призводить до появи токсичного ефекту.До організму риб пестициди потрапляють переважно через зябра, шкіру та можуть захоплюватись з їжею. Токсиканти пестицидної групи мають різний механізм дії. Він залежить від хімічної будови цих речовин і тому єдиної думки по даному питанню не існує. Але особливо шкідливими виявились хлорорганічні сполуки, що обумовлено їх значною стійкістю як у навколишньому середовищі так і всередині організмів тварин, а також різноманітним ефектом дії (токсичний, мутагенний, канцерогенний). Значно більш токсичні, ніж хлорорганічні, фосфорорганічні пестициди. Не настільки токсичні, але дуже шкідливі похідні симм-триазина, сечовини та карбонових кислот.В результаті досліджень впливу пестициду карбофурану на морфо-функціональний стан яєчників ляліуса (ColisalaliaL) отримані дані, що свідчать про переродження тканини яєчників, появу специфічних атлетичних ооцитів діаметром 80-180 мкм і зменшення кількості зрілих ооцитів, відмічено також порушення структури жовточних гранул. Дослідники спостерігали як гіпертрофовані, так і зморщені ооцити невеликого розміру з дезінтегрованими яйценосними пластинками.Вивчення токсичного впливу фосфорорганічного пестициду діазинону дозоволило авторам роботи зробити висновок про значні морфологічні та фізіологічні зміни у Melanotaenia duboulayi, що виражались у гіпертрофії та гіперплазії зябер, закупорці кровоносних судин, потовщенні епітелію зябрових пелюсток, посиленні секреції слизу.При хронічному отруєнні похідними дихлорфеноксиоцтової кислоти у риб спостерігається виснаження організму, атрофія скелетної мускулатури. Перикардіальна порожнина заповнена кров'ю, що майже не зсілася, відмічається жовтушність печінки. При гістологічному дослідженні найбільші зміни відмічені в печінці (застійна гіперемія міжтрабекулярних капілярів, зерниста дистрофія печінкових клітин, в окремих випадках в певних ділянках паренхіми каріо - та плазмопікноз і розпад поодиноких клітин) та міокарді (м'язеві волокна потончені, розрихлені з погано вираженою смугастістю). Субтоксичні концентрації 2,4-ДА при гострому отруєнні викликають у риб зміни в периферійному кровотоці, зниження кількості еритроцитів (на 8,9-18,2%), лейкоцитів (на 22-27%) і в окремих випадках гемоглобіну (до 14%), порушення газообміну (споживання кисню збільшується на 26%) [8].Широко вивчаються також анатомо-фізіологічні зміни в організмі риб, що живуть в умовах пестицидного забруднення. Зокрема, фосфорорганічний пестицид діазинон викликає у Меlahotaenia duboulayi потовщення епітелію зябрових пелюсток, гіпертрофію та гіперплазію зябер, посилену секрецію слизу та закупорку кровоносних судин. У прісноводного ляліуса (Colisalalia) токсикація карбофураном викликала атрезію яєчників. В залежності від концентрації пестициду у риб спостерігали ооцити без зародкових пухирців, гіпертрофовані, зморщені ооцити, дезинтеграцію яйценосних пластинок. Відмічено зміни у гістоструктурі центральної нервової системи молоді білуги в результаті хронічного отруєння яланом. При дії інсектицидів на риб та крабів у тварин спостерігали видозміни у будові нервових клітин. Вважається, що найбільш уразливими до дії забруднюючих речовин, зокрема пестицидів, є органи чуття риб, рецепторні елементи яких безпосередньо відкриті у навколишнє середовище: нюх, смак, бічна лінія, що призводить до змін у поведінці риби в умовах токсикозу. Поведінкові реакції можна використовувати як перші ознаки порушення нормальної життєдіяльності отруєних риб.Відомі також данні про мутагенний та тератогенний вплив пестицидів на ембріональний розвиток осетрових риб, при якому найчастіше спостерігається порушення органогенезу, як правило, ці зміни несумісні з життям. Під час застосування деяких хлорорганічних пестицидів спостерігається також їх ембріотоксична дія на організм риб.При вивченні біологічної дії пестициду SAN 527 I 240 EW (діюча речовина - тауфлувалінат) виявлено, що при концентрації у воді 48 г/га він пригнічує здатність коропа до виживання.Для оцінки фізіологічного стану риб під впливом найрізноманітніших чинників середовища останнім часом широко використовують різні групи біохімічних показників, оскільки, застосовуючи біохімічні методи, і, зокрема, методи ензимоіндикації, можна визначити ступінь інтоксикації на самих ранніх стадіях токсичної дії, задовго до загибелі. Вплив пестицидного забруднення водного середовища на активність певних ферментів організму риб досить широко описано у фаховій літературі, крім того, важливим показником токсичності умов навколишнього середовища є кількісний склад певних метаболітів (загального білку, глюкози, лактату, пірувату тощо) в тканинах [4].Досліджуючи токсичний вплив гептахлору на активність ферментів в організмі мозамбікської тіляпії (TilapiamossambicaL), автори роботи виявили вірогідне збільшення активності кислої фосфатази в зябрах риб та почерговому збільшенню і зменшенню активності ферменту в печінці.При дослідженні індивідуальної та синергічної дії сублетальних доз пестициду монокротофосу та добрива хлориду амонію на склад протеїнів, глікогену, вільного цукру, кислої, лужної фосфомоноестераз та неспецифічних естераз в м'язах та печінці мозамбікської тіляпії відмічено значне зниження рівня всіх вище перелічених речовин уже після 96 годин експозиції. При цьому, суміш добрива і пестициду виявилась більш токсичною, ніж кожна речовина окремо.Виявлено також, що фосфорорганічні пестициди діазінон та малатіон пригнічують холінестеразну активність у личинок райдужної форелі, причому ці зміни корелюють зі змінами рухової активності [7].При вивченні дії сублетальних концентрацій рогора на деякі біохімічні показники кларієвого сома (Claridae), спостерігалось зменшення кількості м'язового глікогену з одночасним збільшенням вмісту лактату. Активність ЛДГ протягом перших 48 годин експозиції різко зростала, а потім (96-192 години експозиції) пригнічувалась Відмічено також зростання активності глікогенфосфорилази у м'язах у відповідь на дію токсиканта.Під дією пестициду фенитротіону, що широко використовується в сільському господарстві, в концентрації 0,02 та 0,04 мг/л в організмі європейського вугра (AnguillaanguillaL) зменшується рівень протеїну, жирів, глікогену, спостерігається пригнічення енергетичного обміну. Більшість метаболічних порушень не приходить до норми протягом тижня. Автори пов'язують вплив фенитротіону з посиленим синтезом ліпопротеїнів, які відіграють захисну роль, та інтенсивним катаболізмом глікогену в умовах інтоксикації.Дослідження інших вчених показали, що при витримуванні білого амура (CtenopharingodonidellaVal) у воді з сублетальними концентраціями аметрину (гербіцид), бейлусцину (молюскоцид) та сечовини у плазмі крові риб спостерігається збільшення концентрації глюкози та незакономірні зміни лактату, в м'язах та печінці вірогіднене зменшення рівня глікогену, крім того зростає активність глюкозо-6-фосфатази в печінці [6].У 1995 році з метою одержання результатів, які б найбільш адекватно відображали вплив антропогенного забруднення на стан молоді осетрових риб (Acipenseridae), були проведені модельні експерименти по вивченню впливу суміші хлорорганічних пестицидів та солей важких металів (ВМ) при передачі їх по трофічним ланцюгам. Як з'ясувалось, рання молодь осетра досить стійка (резистентна) до дії ХОП та ВМ, хоча деякі патологічні зміни все ж таки спостерігались. Така протидія хлорорганічним пестицидам та солям важких металів, на думку дослідників, зумовлена, очевидно, високою інтенсивністю виведення вказаних токсикантів із організму риб. Однак виникнення патологічних змін, з точки зору вчених, не дозволяє вважати осетра достатньо повноцінною та процвітаючою популяцією.
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.