бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Концепции современного естествознания

p align="left">То, что плиты перемещаются, вполне доказано (с помощью спутников можно точно измерить изменение расстояния между двумя точками на разных плитах и определить скорость их перемещения), но механизм их движения все еще до конца неизвестен. Существующая теория объясняет движение плит тем, что возникающие в толще мантии горячие зоны выбрасывают к поверхности нагретое подвижное вещество -- плюмы, которые своим напором заставляют континенты смещаться. Тектоническая карта мира с нанесенными границами плит -- своеобразная гигантская мозаика, все составляющие элементы которой находятся в движении, а очертания плит хоть и медленно, но неуклонно изменяются.

32. Структурная химия. Теория Бутлерова.

В основе структурной химии лежит химическая атомистика Дж. Дальтона, согласно которой любой химический индивид стоит из совокупности молекул, обладающих строго определенным качественным и количественным составом. Более конкретные представления о структуре молекул содержатся в теории Берцелиуса, который пытался ответить на вопрос: существует ли какая-либо упорядоченность в объединении атомов в молекуле или они объединяются произвольно. И. Берцелиус выдвинул гипотезу, согласно которой все атомы химических элементов обладают различной электроотрицательностью в зависимости места, которое они занимают в ряду элементов с убывающей электроотрицательностью. Атом каждого элемента несет два заряда: положительный и отрицательный, но в зависимости от места в ряду один из зарядов больше. Объединение атомов в молекулу приводит к частичной нейтрализации зарядов.

Полная нейтрализация невозможна из-за неравенства зарядов. Поэтому молекулы каждого соединения обладают также избыточным зарядом и склонны к образованию более сложных молекул в виде комплексов.

Таким образом, по Берцелиусу, молекула представляет собой объединение двух разноименно заряженных атомов или атомных групп-радикалов. В этом заключается содержание понятия ”структура" по Берцелиусу.

Французский химик Ш. Жерар (1816-1856) показал, чтоструктурные представления Берцелиуса соответствуют действительности только в ряде случаев. Молекула является единой неделимой и унитарной системой, в которой все атомы всех элементов взаимодействуют -- взаимно преобразуются, в этом сущность "структуры" по Жерару.

Комбинируя атомы разных химических элементов, можно создать структурные формулы любого химического соедине-ния.

Таким образом можно создавать схему синтеза любого хими-ческого соединения, в том числе и неизвестного. Однако в неко-торых случаях, хотя формульная схема составлена правильно, химическая реакция может не осуществиться. Поэтому нужно учитывать не только методику составления формул, но и хими-ческую активность реагентов, которая лежит в основе теории химического строения Бутлерова.

Крупным шагом в развитии представлений о строении моле-кул явилась теория химического строения, выдвинутая в 1861 г. выдающимся русским химиком А. М. Бутлеровым.

Основу теории, разработан-ной А. М. Бутлеровым, составляют следующие положения:

1. Атомы в молекулах соединены друг с другом в определенной последовательности. Изменение этой последовательности приводит к образованию нового вещества с новыми свойствами.

2. Соединение атомов происходит в соответствии с их валент-ностью.

3. Свойства веществ зависят не только от их состава, но и от их "химического строения", т. е. от порядка соединения атомов в молекулах и характера их взаимного влияния. Наиболее сильно влияют друг на друга атомы, непосредственно связанные между собой. Теория химического строения Бутлерова сочетается с широкими теоретическими обобщениями и научным предвидением. Бутлеров был убежден в возможности выразить формулами строения молекул химических соединений и притом сделать это путем изучения их химических превращений.

В 30-е годы нашего века теория Бутлерова нашла физическое квантово-механическое обоснова-ние. Согласно современным представлениям структура молекул -- это пространственная и энергетическая упорядоченность квантово-механической системы, состоящей из атомных ядер и электронов.

Структурная химия охватывает и неорганические материалы. В структурной неорганической химии можно выделить два перспективных направления:

· синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;

· создание кристаллов с заранее запрограммированными дефектами для производства материалов с заданными электрическими, магнитными, оптическими и другими свойствами.

Исследования последнего времени направлены на разработку эффективных технологий синтеза не только органических, но и неорганических материалов.

Изомеры - это соединения, которые состоят из одних и тех же веществ, но с разными свойствами.

Изотопы - атомы одного и того же химического элемента, имеющие одинаковое строение и разный вес.

35. Системный подход. Свойства и структура систем.

Системный подход - путь анализа сложных проблем, в которых проблема рассматривается как система с большим числом внутренних связей, связанная с другими сопутствующими проблемами внешних связей. Такой подход позволяет не только быстро предложить ряд решений, но и выбрать из них оптимальное (например, решение экологических проблем). Системный анализ - это совокупность методов и процедур, направленных на решение сложных комплексных проблем.

Система - это совокупность объектов, объединенных внутренними связями и образующих качественно новое целое и взаимодействующее с внешней средой посредством внешних связей. Система состоит из объектов, названных элементами. Элемент - это наименьшая единица системы. Элементы объединяются в подсистемы. Подсистема - это часть системы, которая обладает определенной автономностью, но в то же время подчиняется системе и управляется ею. Примером системы может служить человек. Связи в системе. 1 тип - связи по горизонтали - связи координации между однопорядковыми элементами. Они носят коррелирующий характер (когда ни одна часть системы не может измениться без других частей, т.е. корреляция - это взаимозависимость). 2 тип - связи по вертикали (связи субординации, иерархичные связи). Иерархичность - это включение систем нижних уровней в системы более высоких уровней. Системные свойства. Эмерджентность (дословно "возникающие") - это проявление у системы новых свойств, которых нет у составляющих систему элементов и подсистем. Стационарность (стабильность) - неизменность параметров системы во времени под действием внешних факторов. Устойчивость системы - это способность системы возвращаться в исходное состояние после выхода из этого состояния под действием внешних факторов. Пластичность - это способность системы возвращаться в исходное состояние после прекращения действия внешнего фактора. Необходимое разнообразие элементов означает, что система не может состоять из одинаковых элементов. Инерционность - это способность системы пассивно сопротивляться внешним воздействиям, т.е., система не может мгновенно измениться под действием внешних факторов. Классификация систем. Системы бывают открытые, закрытые и изолированные. Открытой является система, которая имеет активные двусторонние связи с внешней средой. Закрытой называется система, если связи являются односторонними, направленными внутрь системы и система не дает отклика на внешние воздействия. Изолированными являются системы при полном отсутствии связей с внешней средой. Типы систем. Системы бывают материальные (из материальных объектов, объективные, т.е. не зависят от ученых) и идеальные (они создаются для изучения материальных систем). Иначе идеальные системы называются концептуальными (научно-теоретическими). Системы бывают определенные и вероятностные. Определенные системы (или детерминистские). Поведение таких систем можно точно и однозначно предсказать. Поведение в вероятностной системе носит вероятностный характер.

38. Термодинамика. Первый, второй, третий законы термодинамики.

Термодинамика - это наука о тепловых явлениях, которая исследует физические процессы, происходящие при преобразовании тепловой энергии.

Первый закон термодинамики: энергия не возникает из ничего и не исчезает в никуда, она лишь может превращаться. Это одно из основных положений термодинамики, являющееся по существу законом сохранения энергии в применении к термодинамическим процессам. Было сформулировано в нач. 19 века.

Второй закон термодинамики: невозможен самопроизвольный переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде.

Третий закон термодинамики: нельзя охладить тело до абсолютного нуля (энтропия физической системы при стремлении температуры к абсолютному нулю не зависит от параметров системы и остается неизменной).

Энтропия - это необратимость реакции (например, при сжигании угля в топке паровоза, выделяется дым, обратить дым в уголь невозможно). Энтропия - это функция, составляющая систему, которая характеризует степень беспорядка в системе.

40. Концепция самоорганизации. Синергетика.

Синергетика - это наука о самоорганизации сложных открытых систем. Самоорганизация - процесс формирования в системе все более сложных и сложных подсистем. Этот процесс естественен. Этот процесс вызван не специфическим воздействием извне. Другими словами, самоорганизация в общем понимании - это присущая материи способность к усложнению элементов и созданию все более упорядоченных структур в ходе своего развития; в узком понимании - это скачок, фазовый переход системы из менее в более упорядоченное состояние. В самоорганизации всегда возникает нечто новое, чего раньше не было. Самоорганизация - это междисциплинарная область знания, ведущий принцип всего современного естествознания, применение ко многим предметам, наукам.

В процессе усложнения систем различают два взаимодополняющих механизма: объединение частей и разделение (фракционирование) систем. Механизмы, основанные на этих двух принципах, обнаруживаются на всех уровнях сложности и упорядоченности, начиная с макромира и заканчивая крупномасштабными структурами Вселенной. На разных уровнях сложности системы в основе лежат силы, казалось бы, разной природы, но, в конечном счете все они сводятся к четырем фундаментальным взаимодействиям.

Другая сторона явления самоорганизации - информативность, способность системы любого уровня создавать, накапливать, хранить и использовать информацию, в том числе и о направлении своего развития.

Примеры самоорганизации: торнадо, химические часы, биологические процессы (эволюция), социальные системы (общество), формирование человеческой психики на протяжении жизни.

Необходимые условия самоорганизации:

Открытость системы (взаимодействие с другими системами, с окружающей средой): обмен энергией, обмен веществом, обмен информацией при деградации.

Формирование циклических процессов.

Принцип колыбели. Самоорганизация не происходит везде, а лишь в отдельных, особо сложных частях. Система должна быть погружена в другую систему, более большую ( как бы в колыбели). Нет равноправия. Характер самоорганизации - глобальность деградации и локальность самоорганизации.

Достаточно длительный срок. Системе проще ничего не делать, чем что-то делать. Система обычно находится в состоянии динамического равновесия, т.е. проходят какие-то процессы в системе, но в общем она не изменяется.

Система должна быть достаточно далека от состояния термодинамического равновесия. Иначе больше вероятность деградации, чем самоорганизации.

Уровни самоорганизации в природе:

Космологический - происхождение вещества из вакуума, появление барионной ассиметрии, разделение различных типов фундаментальных взаимодейтсвий, формирование протонов и нейтронов, формирование атомов водорода и гелия, первичный нуклеосинтез, разделение атомов вещеста и электромагнитного излучения.

Астрофизический - формирование галактик, звезд и планетных систем, звездный нуклеосинтез, образование в космосе простейших молекул вплоть до органических.

Геофизический - формирование и эволюция литосферы, гидросферы и атмосферы Земли как благоприятного резервуара для появления сложных органических молекул.

Химический и биохимический - химическая и биохимическая эволюция молекул и молекулярных агрегатов.

Биологический - биологическая эволюция от появления первых клеток до высших животных и человека, формирование и развитие общего в биосфере.

Социальный - социальная эволюция как историческое развитие различных форм человеческих сообществ от первобытных племен до современной всемирной цивилизации.

Психический и интеллектуальный - психическая и интеллектуальная эволюция от появления языка и письменности, мифологии ирелигии до современного состояния единой мировой науки; попытки формирования ноосферы.

Система обязательно когда-нибудь находится в состоянии кризиса, когда любая маленькая деталь может привести к непредсказуемым последствиям, гибели системы. Теория катастроф с математической точки зрения. Катастрофа - это когда при малом взаимодействии система уходит от прежнего динамического состояния и переходит в новое состояние. Система должна пережить катастрофу, чтобы самоорганизоваться.

Бифуркация - разветвление траектории движения тела или дальнейшего пути развития системы в некоторый момент времени. Если предсказание самоорганизации и возможно, то лишь ограниченно, локально, т.к. состояние катастрофы непредсказуемо - бифуркация : либо система "выздоравливает", либо "умирает".

37. Развитие представлений о природе теплоты. Вещественная и кинетическая теории теплоты.

Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдае-мые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Та-кие явления называются тепловыми. Тепловые явления играют огромную роль в жизни людей, животных и растений. От температуры окружающей среды зави-сит возможность жизни на Земле. Люди добились относитель-ной независимости от окружающей среды после того как научи-лись добывать и поддерживать огонь. Многие философы древности рассматривали огонь и связан-ную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предприни-мались попытки связать теплоту с движением, так как было за-мечено, что при соударении тел или трении друг о друга они нагреваются.

Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр, и появилась возможность количественного исследования тепловых процессов и свойств макросистем.

Вновь был поставлен вопрос о том, что же такое теплота. На-метились две противоположные точки зрения. Согласно одной из них -- вещественной теории тепла, теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать из од-ного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.

Согласно другой точке зрения, теплота -- это вид внутрен-него движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.

Таким образом, представление о тепловых явлениях и свойст-вах связывалось с атомистическим учением древних философов о строении вещества. В рамках таких представлений теорию тепла первоначально называли корпускулярной, от слова "корпускула" (частица). Ее придерживались ученые: Ньютон, Гук, Бойль, Бернулли.

Большой вклад в развитие корпускулярной теории тепла сде-лал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помо-щью своей теории он объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о су-ществовании "наибольшей или последней степени холода", ко-гда движение частичек вещества прекращается. Благодаря рабо-там Ломоносова среди русских ученых было очень мало сторон-ников вещественной теории теплоты.

Но все же, несмотря на многие преимущества корпускуляр-ной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того как экс-периментально было доказано сохранение теплоты при теплооб-мене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости -- теплорода. В вещественной теории было введено понятие теплоемкости тел и построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и сейчас.

С помощью корпускулярной теории теплоты не удалось по-лучить столь важные для физики количественные связи между величинами. В частности, не удалось объяснить, почему теплота сохраняется при теплообмене. В те времена не была ясна связь между механической характеристикой движения частиц -- их кинетической энергией и температурой тела. Понятие энергии еще не было введено в физику. Поэтому, вероятно, на основе корпускулярной теории не могли быть достигнуты в XVIII в. те немалые успехи в развитии теории тепловых явлений, какие да-ла простая и наглядная теория теплорода.

К концу XVIII в. вещественная теория теплоты начала сталкиваться со все большими трудностями и к середине XIX в. потерпела полное и окончательное поражение. Большим числом разнообразных опытов было показано, что "тепловой жидкости" не существует. При трении можно получить любое количество теплоты: тем больше, чем более длительное время совершается операция трения. С другой стороны, при совер-шении работы паровыми машинами пар охлаждается и теплота исчезает.

В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество те-плоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энер-гии. Было установлено, что теплота представляет собой форму энергии.

18. Развитие представлений о природе света

Основные законы логики известны еще с древних веков. Так, Платон (430 г. до н.э.) установил законы прямолинейного распространения и отражения света, Аристотель (350 г. до н.э.) и его ученики изучали преломление света.

Первые представления о природе света возникли у древних греков и римлян. В дальнейшем, по .мере изобретения и усовершенствования различных оптических инструментов, эти представления развивались и трансформировались. Скорость света была определена только в 1676 г. Оларфом Ремером из наблюдений затмений спутников Юпитера (с=3*108 см/с). В конце XVII в. на основе многовекового опыта и развития представлений о свете возникли две теории света: корпускулярная (И. Ньютон) и континуальная, т.е. волновая (Р.Гук и Х-Гюйгенс).

Согласно корпускулярной теории (теории истечения), свет представляет собой поток частиц (корпускул), испускаемых светящимися телами и летящих по прямолинейным траекториям.

Движение световых корпускул Ньютон подчинил сформулированным им законам механики. Так, отражение света понималось аналогично отражению упругого шарика при ударе о плоскость, где также соблюдались законы равенства углов падения и отражения. Преломление света Ньютон объяснял притяжением корпускул преломляющей средой, в результате чего скорость корпускул меняется при переходе из одной среды в другую. Из теории Ньютона следовало, что скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.

Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде - эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами - упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн. Результирующая волна, распространяющаяся дальше, возникает вследствие наложения и интерференции всех волн от этих вторичных элементарных источников.

Волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме. Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений. Максвелл в 70-х годах прошлого столетия выдвинул электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.

В конце XIX в. Лоренцем была предложена электронная теория света, согласно которой диэлектрическая проницаемость зависит от длины волны падающего света. Теория Лоренца ввела представление об электронах, колеблющихся внутри атома, и позволила объяснить явления испускания и поглощения света веществом.

Обе теории основывались на гипотезе об эфире, только “упругий эфир” был заменен “эфиром электромагнитным” (теория Максвелла), или “неподвижным эфиром” (теория Лоренца), и поэтому их применение встретило ряд затруднений.

В 1900 г. немецкий физик М.Планк выдвинул гипотезу, согласно которой изучение электромагнитного поля происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой.

В 1905 г. А. Эйнштейн, исследуя проблемы фотоэффекта, распространил идею квантирования также и на поглощение веществом энергии излучения светового потока. Напомним, что внешний фотоэффект состоит в вырывании электронов с поверхности металла под действием света. Согласно Эйнштейну, при облучении вещества световым потоком электроны вещества поглощают энергию света порциями. Позднее им было введено понятие "световых квантов" - фотонов.

Фотон, являясь квантом электромагнитного поля, существует только в движении со скоростью света. У фотона нет массы покоя.

Квантовое представление о свете хорошо согласуется с законами излучения и поглощения света, законами взаимодействия света с веществом. Дальнейший путь развития теории привел к современным представлениям о двойственной корпускулярно - волновой природе света.

8. Донаучное бытовое и мифологическое познание.

На начальных стадиях познания (мифология, натурфилософия) оба этих вида наук и культур не разделялись. Однако постепенно каждая из них разрабатывала свои принципы и подходы. Разделению этих культур способствовали и разные цели: естественные науки стремились изучить природу и покорить ее; гуманитарные своей целью ставили изучение человека и его мира. Считается, что методы естественных и гуманитарных наук также преимущественно различны: рациональный в естественных и эмоциональный (интуитивный, образный) в гуманитарных. Справедливости ради надо заметить, что резкой границы здесь нет, поскольку элементы интуиции, образного мышления являются неотъемлемыми элементами естественнонаучного постижения мира, а в гуманитарных науках, особенно в таких как история, экономика, социология, нельзя обойтись без рационального, логического метода. В античную эпоху преобладало единое, нерасчлененное знание о мире (натурфилософия). Не существовало проблемы разделения естественных и гуманитарных наук и в эпоху средневековья (хотя в то время уже начался процесс дифференциации научного знания, выделение самостоятельных наук). Тем не менее, для средневекового человека Природа представляла собой мир вещей, за которыми надо стремиться видеть символы Бога, т.е. познание мира было прежде всего познанием божественной мудрости. Познание было направлено не столько на выявление объективных свойств явлений окружающего мира, сколько на осмысление их символических значений, т.е. их отношения к божеству [2].

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.