бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Клонирование животных

Клонирование животных

Содержание

Тезисы

Вступление

1. Из истории исследований по клонированию животных

2. Клонирование животных

3. Методы клонирования животных

3.1. Методы трансплантации ядер

3.2. SLIC (sequence and ligation-independent cloning) метод клонирования

3.3. Метод генетического перепрограммирования клеток кожи

4. Этические проблемы клонирования животных

5. Применения клонов животных

6. Эффективность клонирования животных

Выводы

Список использованной литературы

Тезисы

Клонирование, в биологии - это метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения.

Термин "клонирование" пришёл в русский язык из английского. Лишь немного изменив своё звучание и написание, он является аналогом английского clone, cloning. В самом же английском языке это слово стало употребляться (как биологический термин) менее 100 лет назад. Однако за этот небольшой для жизни слова срок оно уже успело несколько раз поменять своё значение.

Создавать животных и растения с заданными качествами всегда было чем-то чрезвычайно заманчивым так как это означало создать организмы уникальнейшие и нужнейшие, устойчивые к болезням, климатическим условиям, дающие достаточный приплод, необходимое количество мяса, молока, плодов, овощей и прочих продуктов. Использование таких технологий клонирования предполагает уникальную возможность получать фенотипически и генетически идентичные организмы, которые могут быть использованы для решения различных теоретических и прикладных задач, стоящих перед биомедициной и сельским хозяйством. В частности, использование клонирования могло бы способствовать изучению проблемы тотипотентности дифференциированных клеток, развития и старения организмов, злокачественного перерождения клеток. Благодаря технологиям клонирования предполагается появление ускоренной генетической селекции и тиражирования животных с исключительными производственными показателями. В сочетании с трансгенозом клонирование животных открывает дополнительные возможности для производства ценных биологически активных белков для лечения различных заболеваний животных и человека. Клонирование животных возможно позволит проводить испытания медицинских препаратов на идентичных организмах.

Все клетки организма животных несут одинаковую генетическую информацию. Однако в процессе морфогенеза соматические клетки дифференцируются, в результате чего часть генома репрессируется. Чем выше уровень специализации клеток, тем меньше их тотипотентность. Эта закономерность была установлена в экспериментах по пересадке ядер.

Вступление

"Клонирование" получение потомков, являющихся точной генетической копией организма. Совокупность таких потомков-копий, происходящих от одного организма, называют клоном. Организмы в пределах каждого клона характеризуются одинаковой фенотипической однородностью и идентичным генотипом.

Термин "клон" был впервые использован в 1903 году Веббером (Webber, Германия) применительно к растениям, размножаемым вегетативно, и означал, что дочерние растения клона генетически идентичны материнскому. В настоящее время разработки в области генной инженерии позволяют клонировать не только микроорганизмы и растения, но и животных. Впервые трансплантацию ядер соматических клеток зародышей в энуклеированные клетки лягушки осуществили американские исследователи Р. Бриггс и Т. Кинг в 1952 году. Ученые, пользуясь микропипеткой, удаляли ядра из яйцеклеток шпорцевой лягушки, а вместо них пересаживали ядра клеток эмбрионов, находящихся на разных стадиях развития. Проведенные исследования показали, что ядра ранних эмбрионов в стадии поздней бластулы и даже ранней гаструлы обладают тотипотентностью и обеспечивают нормальное развитие эмбрионов. Если брать ядра из клеток зародыша на ранней стадии его развития - бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. При пересадке ядер из более дифференцированных клеток (мезодермы и средней кишки) поздней гаструлы у эмбрионов наблюдалось недоразвитие и даже отсутствие нервной системы. После пересадки ядра из клеток более позднего развития яйцеклетки вообще не развивались.

1. Из истории исследований по клонированию животных

Возможность клонирования животных доказал Дж. Гердон, английский биолог, который первым сумел получить клонированные эмбрионы шпорцевых лягушек. Он выжигал ультрафиолетом ядра икринок и затем подсаживал в них ядра, выделенные из клеток эпителия головастиков этого вида. Большая часть полученных таким образом икринок погибала, и лишь совсем маленькая их доля (2,5%) развивалась в головастиков. Взрослых лягушек получить таким образом не удавалось. Тем не менее это был успех, и результаты опытов Гердона попали во многие учебники и руководства по биологии. В 1976 г. Гердон и его соавтор Р. Ласки публикуют работу, в которой описывают опыты с ядрами, выделенными из клеток почек, кожи и легкого уже взрослых шпорцевых лягушек. Исследователи сначала подращивают эти клетки вне организма (in vitro), а затем вводят их ядра в безъядерные икринки. Четверть таких икринок начинает делиться, но вскоре замирает на одой из стадий развития. Тогда ученые выделяют ядра полученных эмбрионов и снова подсаживают их в лишенные собственных ядер икринки... В результате целой серии подобных пересадок на свет наконец-то появляется несколько головастиков. Хотя эксперименты Гердона и его последователей показали принципиальную возможность получения серийных клонов амфибий, появляющиеся на свет головастики упорно не желали превращаться во взрослых лягушек. Вопрос, таким образом, по-прежнему заключался в том, можно ли вырастить из одной специализированной клетки его тела взрослое позвоночное животное. Опыты на амфибиях давали отрицательный результат, но ученые не прекращали исследований в этой области.

Более широкие исследования, охватывающие не только амфибий, но и рыб, а также дрозофил, в 1962 г. были начаты английским биологом Дж. Гордоном. Он первым в опытах с южноафриканскими жабами Xenopus laevis) в качестве донора ядер использовал не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника плавающего головастика.

Затем Гердон вместе с Ласки (1970) стали культивировать in vitro (вне организма в питательной среде) клетки почки, легкого и кожи взрослых животных и использовать уже эти клетки в качестве доноров ядер. Примерно 25% первично реконструированных яйцеклеток развивались до стадии бластулы. При серийных пересадках они развивались до стадии плавающего головастика. Таким образом было показано, что клетки трех разных тканей взрослого позвоночного (X. laevis) содержат ядра, которые могут обеспечить развитие по крайней мере до стадии головастика.

В свою очередь Ди Берардино и Хофнер (1983) использовали для трансплантации ядра неделящихся и полностью дифференцированных клеток крови - эритроцитов лягушки Rana pipiens. После серийной пересадки таких ядер 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Эти эксперименты показали, что некоторые ядра соматических клеток способны сохранять тотипотентность.

Причины, по которым ядра клеток взрослых животных и даже поздних эмбрионов остаются тотипотентными, пока точно не установлены. Решающую роль играет взаимодействие ядра и цитоплазмы. Содержащиеся в цитоплазме животных вещества принимают участие в регулировании экспрессии клеточного генов ядра[5].

Работы М. ди Бернардино и Н. Хоффера показали, что цитоплазма ооцитов амфибий содержит факторы, восстанавливающие тотипотентность ядер дифференцированных соматических клеток. Эти факторы реактивируют репрессированные участки генома.

В 1985 г. была описана технология клонирования костных рыб, разработанная советскими учеными Л.А. Слепцовой, Н.В. Дабагян и К.Г.Газарян. Зародыши на стадии бластулы отделяли от желтка. Ядра клеток зародышей впрыскивали в цитоплазму неоплодотворенных икринок, которые начинали дробиться и развивались в личинки. Эти эксперименты показали, что потеря ядром тотипотентности в процессе онтогенеза связана не с утерей генов, а их репрессией. При культивировании соматических клеток in vitro частота тотипотентности ядер увеличивается. Генетический механизм стабильной репрессии генома дифференцированных клеток не выяснен, способы восстановления тотипотентности не разработаны, поэтому в основном ведется клонирование путем трансплантации ядер эмбриональных клеток.

Пересадки ядер у млекопитающих начались позднее, в 80-х годах. Это было связано с техническими трудностями, так как зигота млекопитающих имеет небольшие размеры. Например, диаметр зиготы мыши приблизительно 60 мкм, а диаметр оплодотворенной яйцеклетки лягушки около 1200 мкм, т.е. в 20 раз больше[26].

Несмотря на перечисленные трудности, первые сообщения о получении клонов мышей, идентичных донору, появились уже в 1981 году. В качестве донора были использованы эмбриональные клетки одной из линий мышей, взятые на стадии бластоцисты. Достоверность полученных данных вначале была поставлены под сомнение, так как воспроизвести результаты проведенных экспериментов в других лабораториях не удавалось, однако пару лет спустя Дж. Мак Грат и Д. Солтер также достигли успеха. В этих экспериментах клоны мышей удавалось получить лишь в том случае, если трансплантировали ядра эмбрионов на стадии не позднее 2 бластомеров. Было показано, что ядра 8-клеточных зародышей и клеток внутренней клеточной массы бластоцисты не обеспечивают развитие in vitro реконструированных яйцеклеток даже до стадии морулы, которая предшествует стадии бластоцисты. Небольшая часть (5%) ядер 4-клеточных зародышей дает возможность развиваться только до стадии морулы. Эти и многие другие данные показывают, что в эмбриогенезе у мышей клеточные ядра рано теряют тотипотентность, что связано очевидно, с очень ранней активацией генома зародыша - уже на стадии 2-х клеток. У других млекопитающих, в частности, у кроликов, овец и крупного рогатого скота, активация первой группы генов в эмбриогенезе происходит позднее, на 8-16-клеточной стадии. Возможно поэтому первые значительные успехи в клонировании эмбрионов были достигнуты на других видах млекопитающих, а не на мышах. Тем не менее, работы с мышами, несмотря на их непростую судьбу, значительно расширили наши представления о методологии клонирования млекопитающих.

В начале пути

1883 -- Открытие яйцеклетки немецким цитологом Оскаром Гертвигом.

1943 -- Журнал Science сообщил об успешном оплодотворении яйцеклетки "в пробирке".

1977 -- Профессор зоологии Оксфордского университета Дж. Гордон клонирует более полусотни лягушек.

1978 -- Рождение в Англии Луизы Браун, первого ребёнка "из пробирки".

1985 -- 4 января в одной из клиник северного Лондона родилась девочка у миссис Коттон -- первой в мире суррогатной матери (зачата не из яйцеклетки миссис Коттон).

1987 -- Специалисты Университета имени Дж. Вашингтона, использовавшие специальный фермент, сумели разделить клетки человеческого зародыша и клонировать их до стадии тридцати двух клеток (бластов, бластомеров).

Дж. Гордон

Первые успешные опыты по клонированию животных были проведены в середине 1970-х годов английским эмбриологом Дж. Гордоном (J. Gordon) в экспериментах на амфибиях, когда замена ядра яйцеклетки на ядро из соматической клетки взрослой лягушки привела к появлению головастика. Это показало, что техника трансплантации ядер из соматических клеток взрослых организмов в энуклеированные ооциты позволяет получать генетические копии организма, послужившего донором ядер дифференциированных клеток. Результат эксперимента стал основанием для вывода об обратимости эмбриональной дифференцировки генома по крайней мере у земноводных[18].

2. Клонирование животных

В своем эксперименте Кэмпбелл и его коллеги извлекли из эмбриона овцы на ранней стадии развития (на стадии эмбрионального диска) клетку и вырастили культуру клеток, то есть добились того, что клетка размножилась в искусственной питательной среде. Полученные генетически идентичные клетки (клеточная линия) сохранили тотипонентность. Затем ученые взяли яйцеклетку овцы-реципиента, тщательно удалили из нее весь хромосомный материал и добились ее слияния с тотипотентной клеткой из культуры. Полученные синтетические эмбрионы выращивали до стадии морулы-бластулы, а затем имплантировали в матку овцы. В результате удалось вырастить нескольких нормальных ягнят, которые были генетически идентичны.

Рис. 1. Методика, с помощью которой Кэмпбелл и его коллеги клонировали овец.

Из клеток эмбрионального диска получили устойчивые культуры клеток. Из ооцитов-реципиентов удаляли часть цитоплазмы вместе с метафазной пластинкой и индуцировали слияние таких безъядерных

ооцитов с клеткой из тотипотентной клеточной линии. Полученные таким образом эмбрионы временно помещались в овцу-реципиента. через неделю проверяли уровень их развития. Наконец, морулы и бластоцисты имплантировались другим овцам, где и проходил весь онтогенез.

В принципе, после того, как получена устойчивая линия тотипонентных клеток, ничто не мешает вносить в них генетические изменения. Например, перестраивая или удаляя отдельные гены, можно создавать трансгенные линии овец и других сельскохозяйственных животных. Однако прежде чем эта технология найдет практическое применение, предстоит решить еще множество проблем.

Пока число клонированных животных очень мало по сравнению с числом исходных эмбрионов, из клеток которых удавалось получить культуру. Многие клетки погибали, не успев достичь стадии бластоцисты. Не ясно, вызван ли высокий процент неудач разнообразными вредными факторами, воздействующими на клетку при манипуляциях с нею, или гетерогенностью самой клеточной линии. Последнее менее вероятно, поскольку процент успешных случаев не меняется при пересевах культуры. Для прояснения этого вопроса необходимо исследовать другие тотипотентные клеточные линии.

Результативность пересадки ядра в яйцеклетку и ее последующее благополучное развитие зависит от адекватного перепрограммирования ядра донора. Макромолекулы (белки и транспортная РНК) ооцита отвечают за его развитие только в течение сравнительно короткого времени (между двумя клеточными делениями), и чем этот период короче, тем меньше остается времени для перепрограммирования. Клетки более зрелых эмбрионов требуют большего времени для перепрограммирования, поэтому вероятность успеха при их использовании снижается. Определенную роль играет также совместимость ядра донора и цитоплазмы реципиента, все еще слабо изученная.

Успех пересадки клеточных ядер связан по крайней мере с двумя факторами. Во-первых, овулировавшие ооциты являются лучшими реципиентами, чем зиготы, либо потому, что у неоплодотворенных яйцеклеток остается больше времени для перепрограммирования, либо потому, что их цитоплазма является более подходящей. Возможно, в цитоплазме ооцита есть элементы, необходимые для перестройки хромосом и активации генома и исчезающие после оплодотворения либо потому, что они каким-то образом связаны с реплицирующейся ДНК, либо в результате запрограммированного распада. Во-вторых, клетки с ядрами донора, взятыми на стадиях G1 или G0 клеточного цикла, развиваются гораздо лучше, чем клетки с ядрами со стадий S или G2. Интуитивно это кажется понятным, ведь перепрограммировать открытый реплицирующийся геном проще.

Клонирование животных возможно с помощью экспериментальных манипуляций с яйцеклетками (ооцитами) и ядрами соматических клеток животных in vitro и in vivo подобно тому, как в природе появляются однояйцевые близнецы. Клонирование животных достигается в результате переноса ядра из дифференцированной клетки в неоплодотворённую яйцеклетку, у которой удалено собственное ядро (энуклеированная яйцеклетка) с последующей пересадкой реконструированной яйцеклетки в яйцевод приёмной матери. Однако долгое время все попытки применить описанный выше метод для клонирования млекопитающих были безуспешными. Значительный вклад в решение этой проблемы был сделан шотландской группой исследователей из Рослинского института и компании "PPL Therapeuticus" (Шотландия) под руководством Яна Вильмута (Wilmut). В 1996 году появились их публикации по успешному рождению ягнят в результате трансплантации ядер, полученных из фибробластов плода овцы, в энуклеированные ооциты. [2] В окончательном виде проблема клонирования животных была решена группой Вильмута в 1997, когда родилась овца по кличке Долли -- первое млекопитающее, полученное из ядра взрослой соматической клетки: собственное ядро ооцита было заменено на ядро клетки из культуры эпителиальных клеток молочной железы взрослой лактирующей овцы. [3] В дальнейшем были проведены успешные эксперименты по клонированию различных млекопитающих с использованием ядер, взятых из взрослых соматических клеток животных (мышь, коза, свинья, корова), а также взятых у мёртвых, замороженных[4] на несколько лет, животных. Появление технологии клонирования животных вызвало не только большой научный интерес, но и привлекло внимание крупного бизнеса во многих странах. Подобные работы ведутся и в России, но целенаправленной программы исследований не существует. В целом технология клонирования животных ещё находится в стадия развития. У большого числа полученных таким образом организмов наблюдаются различные патологии, приводящие к внутриутробной гибели или гибели сразу после рождения.

В апреле 2008 года Южнокорейские таможенники приступили к дрессировке семи щенков, клонированных из соматических клеткок лучшего корейского розыскного пса породы канадский лабрадор-ретривер. По мнению южнокорейских ученых, 90 % клонированных щенков будут удовлетворять требованиям для работы на таможне, тогда как лишь менее 30 % обычных щенков проходят тесты на профпригодность.

Клонирование с целью воссоздания вымерших видов

Клонирование может быть использовано для воссоздания естественых популяций животных, вымерших по вине человека. Несмотря на наличие определённых проблем и трудностей, первые результаты в данном направлении уже имеются.

Клонирование бантенгов

В 2004 году на свет появилась пара бантенгов (диких быков, обитавших в Юго-Восточной Азии), клонированных из клеток животных, умерших более 20 лет назад. Два бантенга были клонированы из уникального "замороженного зоопарка" Сан-Диего, созданного еще до того, как люди поняли, что клонирование вообще возможно. Произведшая клонирование американская компания Advanced Cell Technology сообщила, что в нем использовались клетки животных, которые умерли в 1980 году, не оставив потомства.

Бантенгов клонировали, перенеся их генетический материал в пустые яйцеклетки обычных домашних коров; из 16 зародышей до рождения дожили только два. [7] [8]

Императорский дятел

В последний раз императорского дятла видели в Мексике в 1958 году. С тех пор орнитологи пытаются найти следы этой популяции, но безуспешно. Около десяти лет назад появились даже слухи, что птица еще живет на планете, но и они не подтвердились.

Зато в музеях остались чучела птицы. Научный сотрудник Дарвиновского музея Игорь Фадеев считает, что если операцию по выделению ДНК провести со всеми чучелами, которые находятся в разных странах мира, то дятла можно будет воскресить. В разных музеях мира на сегодняшний день осталось лишь десять чучел императорского дятла.

Если проект увенчается успехом, то в недалеком будущем на нашей планете, возможно, вновь появится императорский дятел. В Государственном Дарвиновском музее уверены, что последние методы молекулярной биологии позволяют выделить и воспроизвести ДНК этих птиц. [9]

Дронт

В июне 2006 года голландские учёные обнаружили на острове Маврикий хорошо сохранившиеся останки дронта - вымершей исторически недавно (в XVII веке) нелетающей птицы. Ранее наука не располагала останками птицы, в исчезновении которой, как всегда, виноват человек. Но теперь появилась определенная надежда на "воскресение" удивительного представителя пернатых. [10]

Клонирование гигантских птиц

Планы по клонированию исчезнувших гигантских птиц были поставлены под сомнение в результате исследований учёных Оксфордского университета. Выделив участки ДНК из останков вымерших птиц, ученые обнаружили, что их генетический материал настолько разрушен, что современная технология не позволяет провести полноценное клонирование. Цель научных работ состояла в возрождении вымерших несколько веков назад новозеландского страуса Моа, а также Мадагаскарского эпиорниса (птицы-слона).

Образцы ДНК были взяты из фрагментов тканей, сохранившихся в музеях. Однако ученые не смогли получить достаточную по своей длине цепочку ДНК, чтобы провести клонирование. Тем не менее, некоторые ученые считают, что в ближайшие годы будет разработана технология восстановления утраченных частей ДНК, путем вшивания туда "заплат" из ДНК близкородственных видов.

1970 - успешное клонирование лягушки[12]

1985 - клонирование костных рыб[13]

1996 -- овечка Долли.

1997 -- первая мышь.[14].

1998 -- первая корова[15].

1999 -- первый козёл[16].

2001 -- первая кошка[17].

2002 -- первый кролик[18].

2003 -- первые бык[19], мул[20], олень[21].

2004 -- первый опыт клонирования с коммерческими целями (кошки).[22]

2005 -- первая собака (афганская борзая по кличке Снуппи).[23]

2006 -- первый хорёк

2007 - вторая собака [24]

2008 -- третья собака (лабрадор по кличке Чейс). Клонирована по государственному заказу[25]. Начало коммерческого клонирования собак[26]

3. Методы клонирования животных

Последние десятилетия XX века ознаменовались бурным развитием одной из главных ветвей биологической науки -- молекулярной генетики. Уже в начале 70-х годов ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных. Возникло новое направление генетики генетическая инженерия. На основе ее методологии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы (ГМО). Появилась возможность генной терапии некоторых заболеваний человека, а последнее десятилетие XX века ознаменовалось еще одним важным событием -- достигнут огромный прогресс в клонировании животных из соматических клеток.

Особенно большой резонанс у мировой общественности получили исследования шотландских ученых из Рослинского Университета, которым удалось из клетки молочной железы беременной овцы получить генетически точную ее копию. Клонированная овца по кличке Долли нормально развивалась и произвела на свет сначала одного, а затем еще трех нормальных ягнят. Вслед за этим появился ряд новых сообщений о воспроизведении генетических близнецов коров, мышей, коз, свиней из соматических клеток этих животных. У приматов, в частности, у обезьян пока не удалось получить клоны с использованием клеток взрослого организма, плода или даже эмбриональных стволовых клеток.

Тем не менее работы в этом направлении активно ведутся. В прошлом году появилось сообщение о клональном размножении потомства приматов путем деления зародыша. Американским исследователям удалось получить генетически идентичные эмбрионы обезьяны резус путем разделения бластомеров зародыша на стадии деления. Из эмбриона родилась вполне нормальная обезьянка Тетра.

Такой тип клонирования обеспечивает генетически идентичное потомство, и в результате можно получить двойню, тройню и более генетических близнецов. Это позволяет проводить теоретические исследования по эффективности новых методов терапии тех или иных заболеваний, появляется возможность повторять научные эксперименты на абсолютно генетически идентичном материале. Имплантируя зародыши последовательно одной и той же суррогатной самке, можно исследовать влияние ее организма на развитие плода [31].

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.