бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Аппарат экспрессии генов и его логика

p align="left">Большинство молекул тРНК, имеющих форму клеверного листа, содержат четыре области, каждая из которых обладает инвариантными свойствами независимо от аминокислотной специфичности тРНК. 1. На 3'-конце молекулы всегда находятся четыре неспаренных нуклеотида, причем три из них-это обязательно ССА. 5'- и 3'-концы цепи РНК образуют акцепторный стебель. Цепи удерживаются вместе благодаря комплементарному спариванию семи нуклеотидов 5'-конца с семью нуклеотидами, находящимися вблизи 3'-конца. 2. У всех молекул имеется шпилька РфС, обозначаемая так потому, что она содержит два необычных остатка: риботимидин и псевдоуридин). Шпилька состоит из двухцепочечного стебля из пяти спаренных оснований, включая пару G-C, и петли длиной семь нуклеотидов. Тринуклеотид Т всегда расположен в одном и том же месте петли. В антикодоновой шпильке стебель всегда представлен семью спаренными основаниями. Триплет, комплементарный родственному кодону, - антикодон - находится в петле, состоящей из семи нуклеотидов. С 5'-конца антикодон фланкируют инвариантный остаток урацила и модифицированный цитозин, а к его 3'-концу примыкает модифицированный пурин, как правило аденин. 4. Еще одна шпилька состоит из стебля длиной три-четыре пары нуклеотидов и петли варьирующего размера, часто содержащей урацил в восстановленной форме - дигидроурацил.

Наиболее сильно варьируют нуклеотидные последовательности стеблей, число нуклеотидов между антикодоновым стеблем и стеблем ТфС, а также размер петли и локализация остатков дигидроурацила в DU-петле.

Рентгеноструктурный анализ некоторых молекул тРНК позволил выявить их характерную четвертичную структуру. Эта структура более компактна, чем структура «клеверного листа». Она образуется благодаря внутримолекулярным взаимодействиям, сближающим DU- и Т| С-шпильки. В результате молекула тРНК выглядит так, как будто она состоит из двух взаимно перпендикулярных частей - в одной из них находится акцепторный участок, в другой - антикодон. Из-за такого общего вида молекулы структура получила название L-конфигурации. L-структура представляется более адекватной, чем «клеверный лист», особенно если учесть, что тРНК играет роль адаптора при взаимодействии кодона и антикодона на рибосоме.

Обычно акцепторами для одной и той же аминокислоты служат несколько разных тРНК, имеющих разные антикодоны, что позволяет им спариваться с кодонами-синонимами. Отчасти этим объясняется и вырожденность кода, т.е. способность разных антикодонов детерминировать одну и ту же аминокислоту.

Этерификация молекул тРНК. Для выполнения функции адаптора в процессе трансляции мРНК тРНК должна связаться с аминокислотой, соответствующей своему антикодону. Это происходит в результате АТР-зависимой реакции, катализируемой специфическими ферментами аминоацил-тРНК-синтетазами. В ходе реакции АТР расщепляется на 5'-адениловую кислоту и неорганический фосфат, а высвобождаемая при этом энергия используется для присоединения карбоксильной группы аминокислоты к одной из гидроксильных групп рибозы на 3'-конце тРНК. На самом деле образование аминоацил-тРНК проходит в два этапа. На первом этапе карбоксильная группа аминокислоты присоединяется к а-фосфату АТР, что сопровождается высвобождением неорганического фосфата и образованием аминоацил-аденилата. Аминоацил-аденилат обладает очень высокой реакционной способностью и стабилизируется благодаря прочному связыванию с ферментом. Второй этап состоит в переносе аминоацильной группы от связанного с ферментом аминоацил-аденилата на 2'-или 3'-ОН-группу концевой рибозы тРНК. Потенциала переноса ацильной группы аминоацил-тРНК более чем достаточно для образования пептидной связи без дополнительного поступления энергии.

Ключевой особенностью реакции, приводящей к аминоацетилированию тРНК, является специфичность участвующих в ней ферментов. Присоединение к тРНК каждой из 20 аминокислот, встречающихся в белках, катализируется определенной аминоацил-тРНК-синтетазой. Фермент должен отличить одну аминокислоту от 19 других и перенести ее к одной или нескольким изоакцепторным тРНК из имеющихся примерно 75 других тРНК. Вспомним при этом, что многие аминокислоты очень сходны по структуре: лейцин, валин и изолейцин; валин и треонин; аспарагиновая и глутаминовая кислоты. Аминоацил-тРНК-синтетазы должны отличить «свои» тРНК от всех других, несмотря на удивительное сходство их вторичной и третичной структур. Поэтому необходимо, чтобы ферменты обладали очень высокой специфичностью, позволяющей им сделать правильный выбор из столь родственных структур и избежать ошибок при синтезе белка.

Комментарий по поводу структур аминоацил-тРНК-синтетаз и их способности к узнаванию аминокислот и родственных тРНК. Многие аминоацил-тРНК-синтетазы удалось очистить. Некоторые из них состоят из одной полипептидной цепи, другие - из двух или четырех идентичных цепей, каждая мол. массой от 35 до 115 кДа. Некоторые димерные и тетрамерные ферменты состоят из субъединиц двух типов. Четкой корреляции между размером молекулы фермента или характером его субъединичной структуры и специфичностью не существует.

Исследования взаимодействия между аминоацил-тРНК-синтетазами и родственными им тРНК не позволили выяснить природу их высокой специфичности. Большинство работ показало, что специфичность фермента определяется его прочным связыванием с акцепторным концом тРНК, DU-участком и вариабельной петлей. Некоторые ферменты, по-видимому, не распознают антикодоновый триплет и катализируют реакцию аминоацетилирования даже при измененном антикодоне. Однако отдельные ферменты проявляют пониженную активность по отношению к таким модифицированным тРНК и при замене антикодона присоединяют не ту аминокислоту. Следовательно, в некоторых случаях существенным оказывается и взаимодействие с антикодоновой петлей. В любом случае акцепторный конец тРНК должен быть ориентирован так, чтобы каталитический центр фермента смог перенести связанный аминоациладенилат к концевому нуклеотиду тРНК.

В какой-то степени способность фермента присоединять нужную аминокислоту к родственной тРНК зависит от специфического связывания аминокислоты. Однако, если безошибочное распознавание родственных аминокислот невозможно, синтетазы могут исправлять ошибки, происходящие при присоединении. Например, нельзя полностью исключить возможность связывания валина изолейцил-тРНК-синтетазой из-за сходства размера и структуры изолейцина и валина. Дефект в специфичности обнаруживается в первой же реакции: изолейцил-тРНК-синтетаза образует ферментсвязанный валил-аденилат, хотя и с меньшей эффективностью, чем изолейцил-аденилат, однако такой активированный валин не связывается ни с TPHK, ни с тРНК. Вместо этого ферментсвязанный валил-АМР быстро гидролизуется в присутствии тРНК, и образование валил-тРНК предотвращается. Подобный механизм позволяет валил-тРНК-синтетазе различать валин и треонин, а метионил-тРНК-синтетазе отличать треонин от метионина. Очевидно, что аминоацил-тРНК-синтетазы пользуются механизмом коррекции с целью предотвращения неизбежных ошибок в аминоацетилировании тРНК. И напротив, механизм, с помощью которого удалялась бы уже присоединенная к тРНК неправильная аминокислота, отсутствует. В таких случаях аминокислота занимает неправильную позицию в белке. Частота таких ошибок очень низка. В гемоглобине кролика, например, валин оказывается в местах, обычно занимаемых изолейцином, только в одном из 25000-50000 возможных случаев. Таким образом, точность первого шага на сложном пути считывания генетической информации обеспечивается четкой работой разных аминоацил-тРНК.

б. На рибосомах осуществляются спаривание аминоацил-тРНК с кодонами и сборка белковых цепей

Во всех клетках имеются рибосомы, играющие ключевую роль в синтезе белка; их число колеблется от 20000 до 50000 в зависимости от белоксинтезирующей активности клеток. Рибосомы индифферентны в отношении синтезируемых ими белков или тех клеточных мишеней, к которым они направляют синтезированные продукты. Тип синтезируемого рибосомой белка в каждом синтетическом цикле диктуется мРНК, с которой рибосома оказалась связанной. Внутри- или внеклеточная локализация белков определяется их структурными особенностями и - в зависимости от этих особенностей - характером взаимодействия со специализированными мембранами и органеллами.

Рибосомы про- и эукариот обладают в общем очень сходными структурой и функциями. Тем не менее из-за различий в структуре и организации про- и эукариотических мРНК и из-за того, что процессы транскрипции и трансляции у эукариот являются сопряженными во времени и в пространстве, тонкие различия между рибосомами про- и эукариот имеются. Типичными прокариотическими рибосомами являются рибосомы Е. coli, и поскольку их структура и функции изучены лучше остальных, мы используем эту модель в последующем обсуждении. Для сравнения мы остановимся на некоторых структурных особенностях рибосом эукариот.

Строение рибосомных частиц. Рибосомы прокариот состоят из малых и больших субчастиц. 30S-субчастицы состоят из единственной молекулы рРНК размером 1542 нуклеотида и 21 белка с разной мол. массой. 50S-субчастицы содержат две рРНК - большую, состоящую из 2904 нуклеотидов, и более мелкие, из 120 нуклеотидов; они связаны с 34 разными белками. Нуклеотидные и аминокислотные последовательности всех рРНК и белков известны. Электронно-микроскопические исследования 70S-рибосом и построения их трехмерных моделей показали, что малая и большая субчастицы соприкасаются в нескольких точках, но самой характерной особенностью является наличие бороздки между ними, необходимой, по-видимому, для размещения в ней мРНК на время трансляции.

И малая, и большая рибосомные субчастицы могут диссоциировать на составляющие молекулы РНК и белка. Более того, даже после отделения друг от друга молекулы всех РНК и белков способны восстанавливать исходную функционально активную рибосомную субчастицу, если их смешать в соответствующих условиях. Это означает, что вся информация о сборке мультимерного комплекса заключена в структуре его компонентов. Эксперименты по реконструированию рибосом позволяют лучше понять характер взаимодействия между этими компонентами и определить возможный порядок, в котором собираются белки и РНК in vivo. Кроме того, в подобных экспериментах можно проверить совместимость эквивалентных РНК или белковых субчастиц из различных источников. Далее, с помощью этого метода можно оценить способность мутантных РНК или белков к взаимодействию с восстановлением структуры рибосом и проявлению различных видов активности, присущих реконструированным рибосомам.

Рибосомы эукариот, находящиеся в цитозоле, также состоят из малых и больших субчастиц. Малые субчастицы содержат одну молекулу РНК размером 1900 нуклеотидов и 30-35 белков; большие - три цепи РНК длиной 120, 160 и 4800 нуклеотидов и 45-50 белков. Рибосомы митохондрий и хлоропластов отличаются от цитозольных рибосом. Как правило, они меньше и содержат меньшее количество белков и различных рРНК. Данные по физическому и химическому реконструированию более сложных эука-риотических хромосом значительно уступают аналогичным данным, полученным для Е. coli.

Необходимо выделить два важных в функциональном отношении участка, образующихся при ассоциации субчастиц в процессе формирования 70S-рибосомы. Это участки, в которых происходит связывание двух тРНК - одной, присоединенной к растущей белковой цепи, и другой, несущей следующую добавляемую к цепи аминокислоту.

Особые тРНК и некоторые вспомогательные белки, участвующие в трансляции. Как у про-, так и у эукариот имеются два вида тРНК, которые связывают метионин. У прокариот они обозначаются как тРНК и тРНК, а у эукариот - соответственно тРНК и тРНК. Каждая из обоих видов тРНК как у про-, так и у эукариот аминоацетилируется метионином с помощью соответствующих аминоацил-тРНК-синтетаз. тРНК прокариот и тРНК эукариот обладают необычными свойствами, позволяющими им функционировать в качестве адапторов при инициации синтеза полипептидной цепи в соответствующих инициаторных AUG-кодонах. тРНК про- и эукариот узнают AUG-кодоны в белок-кодирующих последовательностях.

У прокариот аминогруппа метионил-тРНК, но не метионил-тРНК формилируется особым ферментом до Fmet-TPHK с использованием в качестве донора формильной группы М10-формилтетрагидрофолата. Очевидно, трансформилаза отличает met-TPHK от met-TPHK. Fmet-TPHK используется исключительно для инициации белковых цепей, a met-TPHKMMet - только для декодирования внутренних метиониновых кодонов. Несмотря на то, что тРНК эукариот также используется только для инициации, ее метионильная группа не подвергается формилированию. Очевидно, некие особые свойства, присущие тРНК и необходимые для выполнения ею специальной инициаторной функции, связаны исключительно с ее нуклеотидной последовательностью и / или трехмерной структурой.

Известны белки, которые только временно, на период трансляции, связываются с рибосомами. Они играют важную роль при инициации, элонгации и терминации синтеза белковой цепи. Прежде чем подробно обсуждать эти процессы, мы познакомим читателя с такими белками и кратко опишем их свойства и роль в трансляции.

Эти белки, называемые факторами инициации и обозначаемые IF-1, IF-2 и IF-3, необходимы для инициации трансляции мРНК с образованием белков. IF-1 и IF-3 связываются с 3. Важным этапом терминации или отделения белковой цепи от мРНК является гидролиз GTP.

6. Трансляция мРНК у прокариот

Зная всех участников процесса, мы можем теперь приступить к рассмотрению химических реакций, протекающих при синтезе полипептидов, т.е. реакций, участвующих в собственно трансляции. Несмотря на то, что этот процесс протекает непрерывно от старта к финишу, обычно выделяют три его этапа: инициацию, элонгацию и терминацию. Рассматривая каждый из этапов направляемого мРНК синтеза полипептидной цепи, мы должны учитывать два основных свойства этого процесса. Во-первых, полипептидные цепи синтезируются однонаправлен-но: с амино-конца к карбокси-концу. При этом карбоксильная группа уже образовавшегося участка полипептидной цепи соединяется с аминогруппой следующей присоединяемой аминокислоты с помощью пептидной связи. Это может произойти, лишь если карбоксильный конец растущей полипептидной цепи находится в активированном состоянии. Как мы уже отмечали, необходимая для этого энергия поступает в результате присоединения карбоксильной группы растущей полипептидной цепи и каждой присоединяемой аминокислоты к тРНК. Во-вторых, считывание мРНК начинается с кодона AUG, который обозначает 5'-конец кодирующей последовательности и детерминирует N-концевую аминокислоту синтезируемого полипептида. При инициации первая и вторая молекулы аминоацил-тРНК спариваются с первыми двумя кодонами мРНК. Далее трансляция продолжается в направлении 5'->3' кодон за кодоном до тех пор, пока не достигнет стоп-сигнала, расположенного сразу же за кодоном, детерминирующим С-концевую аминокислоту.

а. Условия инициации

70S-рибосома способна осуществлять трансляцию последовательности мРНК, но не может инициировать этот процесс. При связывании инициаторных белков IF-1 и IF-2 с 30S-субчастицей происходит диссоциация 70S-рибосомы. 30S-субчастица в комплексе с IF-1 и IF-3 связывает IF-2, GTP и Fmet-тРНК. Такой полный комплекс связывается с 5'-концом кодирующей последовательности мРНК вблизи кодона AUG. Очевидно, IF-2 способен отличить Fmet-тРНК от тРНК, и эта специфичность отчасти обеспечивается N-формильной группой, отсутствующей у ТРНК Формирование полноценного функционального комплекса инициации завершается ассоциацией 50S^6-частицы с преинициаторным комплексом. С образованием функциональной 70S-субчастицы отделяются все три белка инициации.

Как узнается первый кодон? Связывание 30S-6-частицы с мРНК находится под строгим контролем нуклеотидной последовательности, расположенной примерно за 10 нуклеотидов до 5'-конца инициаторного кодона. Взаимодействию способствует комплементарное спаривание этой богатой пуринами последовательности из пяти-восьми нуклеотидов, называемой последовательностью Шайна-Дальгарно, с полипиримидиновым участком, находящимся вблизи 3'-конца 16S-pPHK. Эффективность инициации существенно зависит от степени комплементарности между последовательностями Шайна-Дальгарно и 16S-pPHK и от расстояния пурин-богатого участка до кодона AUG. Эта особенность наряду с другими, о которых будет сказано позднее, и объясняет различия в эффективности трансляции различных мРНК.

Процесс инициации зависит также от вторичной структуры того участка молекулы мРНК, в котором находится инициаторный кодон AUG. Если этот кодон окажется внутри двухцепочечного участка, то инициация будет неэффективна или вовсе блокируется. Именно таким образом может регулироваться доступность инициаторного AUG-кодона для 30S-рибосомы. AUG становится недоступным, если он оказывается спаренным при образовании конденсированной формы зрелой мРНК, и, напротив, доступным для инициации во время транскрипции мРНК или во время трансляции других кодирующих последовательностей на той же молекуле мРНК.

б. Элонгация полипептидной цепи

При ассоциации двух рибосомных субчастиц перед инициацией трансляции образуются два функциональных участка, необходимых для сборки белка: Р- и А-участки. Fmet-TPHKj» занимает Р-участок, а для образования первой пептидной связи необходимо, чтобы аминоацил-тРНК, соответствующая следующему кодону, заняла А-участок. Для этого аминоацил-тРНК должна сначала связать EF-Tu и GTP. Образовавшийся тройной комплекс и доставляет аминоацил-тРНК к А-участку. GTP в это время гидролизуется, и комплекс отделяется от рибосомы. Когда оба участка, А и Р, заняты, пептидилтрансферазная активность 50S-субчастицы катализирует перенос группы Fmet с ее тРНК на аминогруппу аминоацил-тРНК, находящейся в А-участке. В результате в А-участке оказывается дипептидил-тРНК, а в Р - свободная тРНК.

Для прочтения следующего кодона и удлинения полипептидной цепи еще на одну аминокислоту вся серия реакций должна повториться. Однако, прежде чем это произойдет, тРНК должна освободить Р-участок, образовавшаяся дипептидил-тРНК должна переместиться на него, а новый кодон должен быть готов к тому, чтобы занять освободившийся А-участок. Все эти процессы осуществляются с помощью EF-G при GTP-зависимой транслокации рибосомы. Источником энергии для перемещения рибосомы к следующему триплету кодирующей последовательности и удаления свободной тРНК из Р-сайта служит реакция гидролиза GTP до GDP. Теперь новый кодон, занявший А-сайт, готов к спариванию с родственной аминоацил-тРНК.

Сразу после связывания аминоацил-тРНК с А-участком высвобождается комплекс EF-Tu-GDP и происходит регенерация функционально активного EF-Tu-GTP. При этом EF-Tu-GDP взаимодействует с белком EF-Ts, что приводит к отделению GDP и образованию комплекса EF-Tu «EF-Ts. Далее EF-Tu «EF-Ts взаимодействует с GTP, происходит регенерация EF-Tu-GTP и отделение EF-Ts, и оба соединения оказываются готовыми к следующему циклу.

Необходимо отметить несколько особенностей процесса элонгации. 1. При образовании каждой пептидной связи расходуется энергия, равная четырем энергетическим эквивалентам: два эквивалента АТР потребляются при аминоацилировании тРНК и два эквивалента GTP-в каждом цикле элонгации. 2. При инициации трансляции IF-2 узнает Fmet-тРНКFMet среди всех других аминоацил-тРНК, a EF-Tu отличает тРНК,» от Fmet-тРНКMMet при внедрении в А-участок. 3. Факторы элонгации EF-Tu и EF-G то присоединяются, то отделяются от рибосомы в зависимости от того, связаны ли они с GTP или с GDP соответственно. 4. Растущая полипептидная цепь всегда соединена своим карбоксильным концом с тРНК, которая соответствует С-концевой аминокислоте в растущей полипептидной цепи. 5. Пептидилтрансфераза катализирует формирование пептидных связей между карбоксильным концом растущей цепи и аминогруппой аминоацил-тРНК.

в. Терминация элонгации полипептидной цепи

Процесс последовательной трансляции кодонов в конце концов доходит до того момента, когда в А-участке оказывается один из трех терминирующих кодонов - UAG, UAA или UGA. Из-за отсутствия тРНК, отвечающих этим кодонам, полипептидил-тРНК остается связанной с Р-участ-ком. Здесь вступают в действие специфические факторы RF-1 и RF-2, которые катализируют отсоединение полипептидной цепи от тРНК, отделение их обоих от рибосомы, а 70S-рибосомы - от мРНК. RF-1 узнает в А-участке кодон UAA или UAG; RF-2 включается в том случае, когда в А-участке оказывается UAA или UGA; RF-3 облегчает работу двух других факторов. Если терминирующим кодоном является UAA, то эффективность процесса терминации оказывается наибольшей, поскольку этот кодон узнают оба фактора - RF-1 и RF-2. Однако, каким бы из стоп-кодонов ни обеспечивалась терминация, ее эффективность зависит от фланкирующих эти кодоны последовательностей в мРНК. Хотя общие черты и даже некоторые детали процесса терминации известны, точный его механизм и каталитическая роль факторов RF-1 и RF-2 пока неясны.

7. Некоторые общие особенности процесса трансляции

В предыдущем разделе мы подробно рассмотрели события одного цикла трансляции мРНК на рибосоме. Здесь акцент будет сделан на некоторых общих принципах процесса в целом и на нарушении или блокировании его отдельных стадий.

а. Одновременная трансляция молекулы мРНК более чем одной рибосомой

После инициации трансляции 70S-рибосома перемещается от сайта инициации по мере считывания каждого последующего кодона. Когда расстояние от рибосомы до сайта инициации достигнет величины 100-200 нуклеотидов, в этом сайте может произойти новая инициация. Более того, как только вторая рибосома пройдет такое же расстояние, может произойти третья инициация, и т.д. Итак, одну и ту же белок-кодирующую последовательность мРНК могут одновременно транслировать несколько рибосом. Подобные мультирибосомные трансляционные комплексы называются полирибосомами или полисомами. Каждая рибосома полисомы обязательно целиком транслирует кодирующую последовательность с образованием полноразмерного полипептида. От каждой рибосомы в полисоме отходит полипептид, длина которого соответствует расстоянию, пройденному рибосомой от сайта инициации. Эта длина пропорционально увеличивается по мере продвижения рибосомы по мРНК, начиная с 5'-конца кодирующей последовательности.

б. Трансляция бактериальных мРНК может осуществляться параллельно транскрипции

Образование мРНК при транскрипции гена или кластера генов начинается с 5'-конца в направлении к 3'-концу. Следовательно, формирование комплекса инициации трансляции может произойти сразу же после того, как будет транскрибирована последовательность, в пределах которой находится инициирующий кодон. И в самом деле, синтез полипептидной цепи обычно начинается до завершения транскрипции 3'-концевой части мРНК.

Если бактериальная транскрипционная единица содержит более одной кодирующей белок последовательности, как, например, в случае trp- или lac-оперонов, то на рибосомах может начаться и даже завершиться трансляция первой из этих кодирующих последовательностей еще до окончания транскрипции остальных. Матричные РНК, состоящие из многих белок-кодирующих участков, часто транслируются последовательно, т.е. инициация, элонгация и терминация трансляции первой кодирующей последовательности сопровождаются такими же событиями на втором, третьем и последующих кодирующих сегментах. После того как рибосомы доходят до сигнала терминации в первой или любой другой кодирующей последовательности, они отделяются от мРНК, и со следующим инициаторным участком связывается новый комплекс. Однако в некоторых случаях рибосомы не отделяются от мРНК, а перемещаются вдоль молекулы, образуя новые комплексы инициации в других сайтах.

в. Рибосомы начинают новый раунд после трансляции кодирующей последовательности

Как мы уже говорили, когда осуществляющая трансляцию 70S-рибосома доходит до терминирующего кодона, полноразмерная полипептидная цепь отделяется от мРНК, а обе они - полипептид и тРНК - отделяются от рибосомы, и происходит разделение 70S-рибосомы и мРНК. 70S-рибосомы не способны к инициации новых раундов синтеза полипептидов и, следовательно, должны диссоциировать на составляющие их 50S- и 30S-субчастицы. Такая диссоциация контролируется фактором инициации IF-3 совместно с IF-1. «Рибосомный» цикл завершается ассоциацией 50S-субчастицы с 30S-субчастицей, связанной с мРНК и несущей IF-2, Fmet-тРНКFMet и GTP, с образованием функционального трансляционного 70S-аппарата. Таким образом, изменяя количество 30S- и 50S-субчастиц по отношению к их предшественнику - 70S-рибосоме, - фактор IF-3 осуществляет общий контроль уровня белкового синтеза.

Затем проделывает третья рибосома и т.д. В результате на одной и той же мРНК могут одновременно синтезироваться сразу несколько полипептидов.

г. Взаимодействие кодона и антикодона

Большинство молекул тРНК спаривается более чем с одним кодоном. Поскольку кодоны транслируются при участии антикодонов разных тРНК, можно было бы ожидать, что для каждого из 61 кодона, детерминирующего аминокислоты, имеется своя тРНК. Однако не существует ни разных тРНК для каждого из четырех валиновых или глициновых кодонов, ни разных тРНК для обоих тирозиновых или обоих лизиновых кодонов. Действительно, эксперименты in vitro и in vivo показали, что некоторые тРНК могут транслировать более чем один кодон. Так, кодоны UAU и UAC транслирует единственная тРНКТуг. Поскольку антикодон этой тРНКТуг имеет последовательность 5'-GUA-3', он может образовать комплементарные пары с первыми двумя основаниями любого из этих кодонов. Соответственно G способен спариваться как с U, так и с С, находящимися в третьем положении кодонов; аналогичным образом U, находясь на 5'-конце какого-либо антикодона, может спариться и с А, и с G, находящимися на 3'-конце соответствующих кодонов. На самом деле трансляция всех пар кодонов, у которых в третьей позиции стоит U или С, может осуществляться одной и той же тРНК, у которой первым основанием в антикодоне оказывается G или какое-то модифицированное основание. По-видимому, при спаривании кодонов и антикодонов в А- и Р-участках включаются какие-то стабилизирующие взаимодействия, отличные от тех, которые имеют место при обычном комплементарном спаривании оснований.

Анализ генетического кода показывает, однако, что существуют специфические взаимодействия, позволяющие различать кодоны, у которых в третьей позиции стоит А или G. Например, тРНК, расшифровывающая кодон AUG как метионин, должна отличать этот триплет от кодона AUA, обозначающего изолейцин, а тРНК'1*11' должна отличать триптофановый кодон UGG от терминирующего кодона UGA. Специфичность обеих этих операций декодирования определяется спариванием С антикодона с G, находящимся в третьем положении кодона.

Модификация оснований в антикодонах может еще сильнее ограничить диапазон возможных взаимодействий кодон-антикодон. Например, гипоксантин, занимая место аденина в той позиции антикодона, по которой происходит спаривание с третьим основанием кодона, может обусловить спаривание такого антикодона с кодонами, у которых в последней позиции стоят основания U, С или А. Разнообразие модификаций оснований в антикодо-нах или-что встречается наиболее часто - оснований, соседствующих с антикодоном, изменяет специфичность взаимодействия аминоацил-тРНК-кодон. Таким способом обычно предотвращаются ошибки при считывании третьего основания кодонов и обеспечивается надежность процесса декодирования.

Правила спаривания оснований, согласно которым молекулы тРНК одного типа могут узнавать несколько разных кодонов, называются правилами неоднозначного соответствия. Следует отметить, однако, что термин «качание», используемый для описания некоторой свободы спаривания третьего основания кодона, просто как бы затушевывает тот факт, что мы до конца не знаем, какие именно химические и структурные особенности обусловливают кодон-антикодоновые взаимодействия в Р-и А-участках рибосомы.

Мутации в кодонах и антикодонах. Мутации, затрагивающие различные компоненты трансляционного аппарата, могут изменить результат считывания кодирующей последовательности. Наиболее драматичные последствия вызывают те мутации в гене, кодирующем белок, которые превращают кодон, отвечающий какой-то аминокислоте, в терминирующий кодон и тем самым приводят к преждевременному завершению синтеза из-за досрочной терминации трансляции в мутировавшем сайте. Примером может служить превращение лизинового кодона ААА в UAA и глутаминового кодона CAG в UAG. Аналогично любая мутация, в результате которой происходит замена аминокислотного кодона на кодон UGA, тоже вызовет преждевременную остановку синтеза полипептидной цепи. Однако, если в результате второй мутации произойдет изменение соответствующего основания в антикодоне тРНК, терминация может быть предотвращена, или супрессирована, и образуется полноразмерный, хотя и измененный, белок. Например, если тРНК, тРНК или тРНК изменятся подобным образом, то они смогут прочитать кодон UAG как аминокислотный. С помощью различных механизмов может произойти ошибочная трансляция и таких мутантных кодонов, как UAA и UGA. Мутации в тРНК-генах, затрагивающие основания, отличные от тех, которые составляют антикодон, могут привести к изменению специфичности или стабильности взаимодействий кодона и антикодона. Благодаря таким механизмам может быть предотвращена преждевременная терминация синтеза полипептида, если терминирующий кодон будет прочитан как смысловой. Подобная супрессия терминации, как правило, не очень эффективна, поэтому наряду с полноразмерными образуются и укороченные, преждевременно терминированные полипептидные цепи. Благодаря относительной неэффективности такой трансляционной супрессии не приносит большого вреда и случайное проскакивание терминирующих кодонов, находящихся на естественных концах кодирующих мРНК.

Миссенс-мутации, т.е. мутации, приводящие к аминокислотным заменам и соответственно к утрате белком его функции, также могут быть ревертированы благодаря супрессорным мутациям, вызывающим ошибочное считывание мутантного кодона. Это может произойти в том случае, если тРНК, несущая нужную аминокислоту или любую другую, которая может быть включена в данный сайт белковой цепи, имеет антикодон, способный к спариванию с мутантным кодоном. Мутации, вызывающие сдвиг рамки считывания кодирующей последовательности, также могут быть супрессированы, если мутантные тРНК или рибосомы случайно транслируют два или четыре основания вместо трех.

Итак, ошибки трансляции могут компенсировать последствия нарушений кодирующей последовательности. Мутационные изменения в антикодоне тРНК-это наиболее распространенный механизм супрессии; изменения в других участках молекулы тРНК могут привести к неправильной этерификации аминокислот аминоацил-тРНК-синтетазами или ошибочному спариванию на рибосоме. Ошибки в трансляции могут возникать и в том случае, если в результате мутаций происходит изменение белков или РНК-компонент рибосом, участвующих в кодон-антикодоновом взаимодействии. Точность трансляции уменьшается и под действием некоторых химических соединений, которые связываются с рибосомными белками в 30S-субчастице. Такие случаи нарушения процесса трансляции приводят к более тяжелым последствиям.

8. Трансляция мРНК у эукариот

Процесс трансляции эукариотической мРНК в основном аналогичен таковому прокариотической мРНК. За некоторыми отмеченными выше исключениями, генетический код универсален и кодоны последовательно транслируются с помощью специфических аминоацил-тРНК-синтетаз на рибосомах. Есть, однако, и три явных различия, обусловленных определенными свойствами эукариотических клеток. Во-первых, аппараты транскрипции и трансляции у эукариот физически разобщены, поскольку транскрипция осуществляется в ядре, а трансляция - в цитоплазме. Во-вторых, на 5'- и 3'-концах эукариотических мРНК имеются особые структуры. И в-третьих, эукариотические мРНК, за исключением мРНК, транскрибируемых с ДНК геномов вирусов, обычно содержат только одну белок-кодирующую последовательность.

Структура и свойства участников трансляции эукариотической мРНК пока изучены гораздо хуже, чем у прокариот. И хотя у эукариот выделяют те же три стадии процесса - инициацию, элонгацию и терминацию, - на каждой из них требуется больше нерибосомных белковых факторов. Несмотря на эти различия, последовательности, кодирующие белки прокариот, нормально транслируются эукариотическими системами трансляции при условии соответствующей модификации их мРНК на 3'- и 5'-концах. И наоборот, кодирующие последовательности эукариот эффективно транслируются системами прокариот, если у них перед 5'-концом инициаторного кодона AUG имеется последовательность Шайна-Дальгарно. Это значит, что трансляционные аппараты обоих типов организмов могут осуществлять свои функции, несмотря на особенности нуклеотидных последовательностей мРНК из разных источников.

а. Особые модификации мРНК эукариот

У эукариотических мРНК, транскрибированных с ядерных или вирусных геномов РНК-полимеразой II, всегда модифицированы 5'-концы, которые в этом случае называют «кэпами». РНК, транскрибируемые эукариотическими РНК-полимеразами I и III, не кэпированы и имеют обычные 5'-фосфатные концы. У большинства мРНК, синтезируемых РНК-содержащими вирусами животных, также имеются кэпы, хотя они синтезируются вирусными РНК-транскриптазами. Многие некэпированные мРНК неэффективно транслируются эукариотическими белоксинтезирующими системами из-за слабого связывания рибосом с мРНК. Кэпирование происходит на 5'-нуклеозидтрифосфате вскоре после инициации синтеза РНК-транскриптов и задолго до его завершения.

На 3'-концах эукариотических мРНК имеются еще и полиаденилатные последовательности. Такой 3' - «хвост» из 50-200 аденилатных остатков не кодируется смысловыми последовательностями соответствующих генов, а присоединяется посттранскрипционно, после разрезания транскрипта в специфическом месте за сигналом терминации трансляции.

б. Инициация трансляции на 5'-кэпированных концах малыми рибосомными субчастицами

Как мы уже говорили, обязательным этапом при инициации трансляции прокариотической мРНК является диссоциация 70S-рибосомы; точно так же и 80S-рибосомы должны диссоциировать до начала трансляции эукариотических мРНК. Малая субчастица в комплексе со множеством белков-помощников, из которых один или несколько нужны для диссоциации рибосомы на составляющие субчастицы, связывает особую инициаторную met-тPHK. И вновь для связывания инициаторной аминоацил-тРНК необходимы GTP и особый белок - eIF-2. У эукариот, однако, met-TPHK не подвергается N-формилированию; но, как и у прокариот, структура тРНК отличается от структуры тPHKMMet. Комплекс 40S, содержащий met-тPHKIMet, GTP и целую армию других факторов eIF, связывается с мРНК вблизи кэпированного 5'-конца или прямо с этим концом; по крайней мере один из этих факторов узнает кэп и связывается с ним. Малая субчастица перемещается при помощи неизвестного пока механизма от кэпированного конца до первого кодона AUG. Никакой последовательности вблизи кодона AUG, аналогичной последовательности Шайна-Дальгарно, пока не обнаружено. Однако эффективность работы AUG в качестве инициатор-ного кодона зависит от наличия определенных фланкирующих нуклеотидов. Такой преинициаторный комплекс объединяется с 60S-субчастицей в ходе энерго- и фактор-зависимой реакции с образованием функционального комплекса инициации. Инициация белкового синтеза может регулироваться фосфорилированием и дефосфорилированием eIF-2.

в. Элонгация и терминация полипептидной цепи

Поэтапная трансляция последовательных кодонов с помощью аминоацил-тРНК у эу- и прокариот в принципе сходна. GTP и фактор элонгации eEF-1, соответствующий прокариотическому комплексу EF-Tu и EF-Ts, периодически поставляют рибосомам аминоацил-тРНК. GTP и eEF-2, являющиеся функциональными аналогами прокариотического EF-G, осуществляют транслокацию. Терминация трансляции у эукариот также происходит в одном из трех стоп-кодонов и сопровождается отделением свободных полипептидных цепей, мРНК и, возможно, 80S-рибосом от мРНК. По-видимому, всю серию терминационных событий осуществляют один фактор eRF и GTP.

В результате последовательных актов инициации образуются полисомы и одновременно, как и у прокариот, начинается трансляция множества кодирующих белки последовательностей. Заметное отличие трансляции у эукариот состоит в том, что клеточные мРНК обычно содержат одну-единственную кодирующую последовательность. Если в мРНК имеется несколько таких областей, то последующие либо вовсе не транслируются, либо транслируются неэффективно.

Кроме регуляции на уровне трансляции при образовании рибосомных белков осуществляется также регуляция по типу обратной связи при транскрипции оперонов рибосомных белков. Мы не будем обсуждать регуляцию этих оперонов на уровне транскрипции, а лишь отметим, что могут происходить репрессия и аттенуация транскрипции рибосомными субчастицами или даже целыми рибосомами. Наиболее вероятно, однако, что ключевым пунктом в регуляции скорости синтеза рибосом является образование рРНК. Таким образом, синтез рибосомных белков и тем самым сборка рибосом регулируются путем изменения содержания рРНК.

Страницы: 1, 2, 3


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.