|
Активность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных при химиотерапевтическом воздействииАктивность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных при химиотерапевтическом воздействииФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Пензенский государственный педагогический университет им. В. Г. Белинского Факультет Естественно-географический Кафедра биохимии Дипломная работа Активность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных при химиотерапевтическом воздействии Студент _____________________ Лобзина Е. С. Руководитель ______________________ Сметанин В. А. К защите допустить. Протокол № от « _ » 200 г Зав. кафедрой ____________________________ Генгин М.Т. Пенза, 2009 г. Содержание Список сокращений Введение Глава 1. Обзор литературы 1.1. Противоопухолевая химиотерапия 1.1.1. Механизм действия противоопухолевых препаратов 1.1.2. Осложнения химиотерапии 1.2. Пептидергическая система 1.2.1. Механизм образования активных форм регуляторных пептидов 1.2.2. Роль биологически активных пептидов 1.2.3. Ферменты обмена регуляторных пептидов 1.2.3.1. Ангиотензинпревращающий фермент 1.2.3.2. Карбоксипептидаза N 1.3. Функционирование пептидергической системы при онкологических заболеваниях 1.4. Роль оксида азота (II) в онкогенезе Глава 2. Материалы и методы 2.1. Материал исследования 2.2. Методы исследования 2.2.1. Метод определения активности карбоксипептидазы N 2.2.2. Метод определения активности ангиотензинпревращающего фермента 2.2.3. Метод определения содержания белка 2.2.4. Метод количественного определения оксида азота (II) в сыворотке крови 2.3. Статистическая обработка результатов исследования Глава 3. Результаты и обсуждение 3.1. Исследование активности карбоксипептидазы N в сыворотке крови онкологических больных при химиотерапевтическом воздействии 3.2. Исследование ангиотензинпревращающего фермента в сыворотке крови онкологических больных при химиотерапевтическом воздействии 3.3. Исследование содержания нитрит-иона в сыворотке крови у онкологических больных при химиотерапевтическом воздействии Выводы Список литературы Список сокращенийАПФ - ангиотензинпревращающий ферментККС - калликреин-кининовая системаКПN - карбоксипептидаза NЛАП - лейцин-аминопептидазаММП - матриксные металлопротеазыРААС - ренин-ангиотензин-альдостероновая системаРЩЖ - рак щитовидной железыiNOS - индуцибельная NO-синтазаNO - оксид азота IITNFa - фактор некроза опухолейВведениеВ структуре заболеваемости и смертности онкологическая патология занимает одно из ведущих мест. С каждым годом число людей, страдающих этим заболеванием, растет [2,34,49].Развитие опухоли в организме приводит посредством различных механизмов к глубоким физико-химическим, нейрогуморальным и ферментативным сдвигам. Опухоли паразитируют в организме, извлекая необходимые для роста вещества из здоровых клеток и секретируя токсины локально или в системный кровоток [5,18,30,38,49].Существует три направления лечения раковых заболеваний: хирургическое, радиологическое и химиотерапевтическое. Химиотерапия злокачественных опухолей - это использование лекарственных веществ, тормозящих пролиферацию или необратимо повреждающих опухолевые клетки [10,30,43]. Главной причиной, послужившей стимулом к развитию лекарственной терапии злокачественных опухолей, явилась неудовлетворенность результатами хирургического и лучевого лечения [7].Особенность применения химиопрепаратов заключается в близкой сопряженности лечебного и токсического эффекта. К побочным действиям относят проявления нейро-, гепато-, кардиотоксичности, нарушения системы свертывания крови и эндокринных органов [15,25,32,37]. Итогом побочных действий являются, в том числе, нарушения в функционировании калликреин-кининовой и ренин-ангиотензиновой систем, важными компонентами которых являются ангиотензинпревращающий фермент и карбоксипептидаза N [52]. Кроме того, эти ферменты влияют на уровень брадикинина, стимулирующего продукцию оксида азота (II), который, в свою очередь, являясь мультифункциональной молекулой, может регулировать пролиферативную активность и апоптоз опухолевых клеток [28].Целью настоящей работы было изучение роли карбоксипептидазы N и ангиотензинпревращающего фермента в период химиотерапии у онкологических больных.При выполнении работы были поставлены следующие задачи:1. Изучить активность ангиотензинпревращающего фермента, карбоксипептидазы N и концентрацию оксида азота (II) у здоровых людей.2. Изучить активность ангиотензинпревращающего фермента, карбоксипептидазы N и концентрацию оксида азота (II) у онкологических больных до химиотерапии.3. Изучить активность ангиотензинпревращающего фермента, карбоксипептидазы N и концентрацию оксида азота (II) у онкологических больных после химиотерапии.4. Установить корреляционные взаимосвязи между активностью ферментов и концентрацией оксида азота (II) в сыворотке крови у онкологических больных до и после химиотерапии.Научная новизна и практическая ценность работы. Изучена активность карбоксипептидазы N, ангиотензинпревращающего фермента и концентрация оксида азота (II) в сыворотке крови у онкологических больных в период химиотерапии. Установлены корреляционные взаимосвязи между активностью исследуемых ферментов и уровнем оксида азота (II) при химиотерапевтическом воздействии.Полученные результаты позволяют расширить наши представления о биологической роли карбоксипептидазы N и ангиотензинпревращающего фермента, а также получить более полную картину о влиянии химиопрепаратов на организм при онкологических заболеваниях и могут быть использованы для коррекции терапии, оценки его эффективности и контроля больных после окончания курса лечения.Апробация работы Материалы данной работы представлены на 58 научной конференции студентов ПГПУ, на XVI Международной научно-практической конференции «Экология и жизнь» (24-25 апреля 2009 г.).Глава 1. Обзор литературы1.1 Противоопухолевая химиотерапияХимиотерапия злокачественных опухолей предполагает применение лекарственных веществ избирательно действующих на рост опухоли и опухолевую ткань. Противоопухолевый эффект определяется соотношением действия вещества или продуктов его превращения в организме непосредственно на опухолевые клетки и организм в целом [9,10,40,43].Основные принципы химиотерапии опухолей:1. Подбор препарата соответственно спектру его противоопухолевого действия.2. Выбор оптимальной дозы и режима введения препарата, обеспечивающих лечебный эффект без побочных явлений.3. Учет факторов, требующих коррекции доз и режимов во избежание тяжелых осложнений химиотерапии [17,25].Существует прямая зависимость между разовой и суммарной дозой и терапевтическим эффектом. Доза препаратов должна быть максимально переносимой и вызывать максимальный противоопухолевый эффект [9,37,43,44].Химиопрепараты обладают определенной специфичностью на различные виды злокачественных новообразований. Быстро растущие опухоли более чувствительны к химиотерапии, чем медленно растущие. Метастазы опухолей более чувствительны к химиопрепаратам, чем первичные новообразования. Эффективность химиотерапии обратно пропорциональна массе опухоли, при которой начинают лечение. Чем больше опухоль, тем меньше эффект, и наоборот [25,46,55].Современная химиотерапия - это комбинированная химиотерапия, когда используются одновременно от 2 до 6 цитостатиков с разным механизмом действия. При этом исходят из представления о том, что нарушения различных биохимических реакций в опухолевой клетке уменьшают шансы на то, что уцелеют резистентные клоны опухоли. Обычно в эти комбинации включают препараты с разной токсичностью, что может увеличить противоопухолевый эффект без увеличения общей токсичности [10,37].Основной проблемой химиотерапии является неспособность цитостатиков полностью уничтожить опухоль в большинстве случаев. Клеточная популяция опухоли весьма гетерогенна, что делает вероятным существование клеточных линий, резистентных к химиотерапии. По мере гибели чувствительных к цитостатикам клеток химиорезистентные штаммы получают избирательное преимущество в росте [7,25,45].1.1.1 Механизм действия противоопухолевых препаратовПо своему происхождению и механизму действия существующие противоопухолевые препараты делятся на следующие группы:1. Алкилирующие агенты: хлорбутин, эмбихин, допан, ломустин.2. Антиметаболиты: метотрексат, меркаптопурин, фторурацил, фторафур.3. Антибиотики: дактиномицин, блеомицин, рубомицин, адриамицин.4. Алкалоиды растительного происхождения: винбластин, винкристин, таксол [10,25,30].По происхождению химиопрепараты можно разделить на синтетические и природные. К синтетическим препаратам относятся алкилирующие агенты и антиметаболиты. К продуктам природного происхождения относят антибиотики и алкалоиды. Противоопухолевые средства способны уничтожать опухолевую клетку (цитотоксический эффект) или угнетать их пролиферативную активность (цитостатический эффект) [43,51]. Механизм действия цитостатических веществ основан на их реагировании с молекулами жизненно важных химических соединений, составляющих субстрат клеток (белками, нуклеиновыми кислотами, ферментами), вследствие чего наступает изменение структуры и физико-химических свойств внутриклеточных компонентов, подавление биокаталитических процессов, лежащих в основе обмена веществ, нарушение митотического процесса и гибель клеток [51].Вещества алкилирующего действия взаимодействуют с нуклеиновыми основаниями двойной спирали ДНК. Они присоединяются к ДНК путем реакции алкилирования - замещения атома водорода нуклеинового основания на метильную группу цитостатика. В результате образуются аномальные пары оснований. Это приводит к прямому подавлению транскрипции либо к образованию дефектной РНК и синтезу аномальных белков.Антиметаболиты. Структурная или функциональная схожесть с молекулами- метаболитами позволяет им блокировать синтез нуклеотидов и тем самым угнетать синтез ДНК или РНК либо напрямую встраиваться в структуры ДНК и РНК, блокируя процессы репликации и синтеза белков.Антибиотики. Непосредственно воздействуют на ДНК путем интеркаляции, запускают механизм свободно-радикального окисления с повреждением мембран клеток и внутриклеточных структур, а также ДНК. Нарушение структуры ДНК ведет к нарушению процессов репликации и транскрипции.Алкалоиды растительного происхождения. Цитостатический эффект винка-алколоидов обусловлен деполимеризацией тубулина. Процесс клеточного деления останавливается в фазе митоза. Другие препараты способствуют полимеризацию тубулина, вызывая образование дефектных микротрубочек и необратимую остановку клеточного деления. По-видимому, противоопухолевый эффект проявляемый некоторыми алкалоидами зависит также от подавления ими некоторых других биохимических процессов [10,22,25,30,40,43].1.1.2 Осложнения химиотерапииОдна из проблем химиотерапии - токсичность цитостатических препаратов [25]. Применяемые даже в терапевтических дозах химиопрепараты вызывают целый ряд побочных явлений, что связано с их повреждающим действием на ряд органов и систем организма. Невысокая избирательность действия противоопухолевых препаратов объясняется отсутствием качественных отличий в биохимии, темпе роста, способности к репарации после повреждения между опухолевыми и нормальными клетками. Наряду с подавлением ими различных этапов обмена нуклеиновых кислот в опухолевых клетках, они оказывают влияние и на обмен нуклеиновых кислот быстро размножающихся популяций нормальных клеток - иммунокомпетентных, костного мозга, желудочно-кишечного тракта, репродуктивных органов [15,17,25,29,41].Ряд побочных эффектов сравнительно специфичен для отдельных цитостатиков. К таким побочным действиям относят проявления нейро-, гепато-, кардиотоксичности, нарушения системы свертывания крови, эндокринных органов. Подобные специфические осложнения химиотерапии опухолевых заболеваний зависят от особенностей фармакологических свойств цитостатиков и их метаболизма [15,37].Нейротоксичность обнаруживается лишь у некоторых противоопухолевых препаратов независимо от их способности проникать через ГЭБ. Проявляется в слабости скелетной мускулатуры, судорожных мышечных сокращений, развитии глаукомы. Имеются данные о нарушениях обмена аланина, лейцина и серина в синапсах [15,17].Гепатотоксическое действие цитостатиков выражается в разной степени. Наибольшую часть осложнений составляют гепатопатии, не выходящие за пределы отклонений в показателях лабораторных тестов. При длительной цитостатической терапии наблюдаются гипербилирубинемия и гиперхолестеринемия, снижение уровня протромбина и коагуляционных факторов крови. При лечении производными платины гепатотоксичность проявляется в обратимом повышении аминотрансфераз. Антиметаболиты вызывают изменение отдельных функций печени вплоть до желтухи [15,44].Кардиотоксическое побочное действие в основном присуще противоопухолевым антибиотикам. Отмечают боли в области сердца и нарушение ритма [15,44,49].Нефротоксичность (характерно для производных платины) зависит от дозы введенного препарата и проявляется повышением содержания мочевины, мочевой кислоты и креатинина в плазме, снижением креатинового клиренса [44].Алкалоиды наряду с общетоксическим действием влияют на утилизацию глутаминовой кислоты и аргинина, определенным образом действуют на обмен пролина, глутамина, триптофана. Усиливают отдачу гипоксантина, но не тормозят утилизацию клетками аденина. Не вызывают существенных нарушений со стороны печени за исключением уменьшения содержания альбуминов крови. Со стороны почек отмечают уменьшение содержания натрия [44].Антиметаболиты угнетают гемопоэз, обладают антикоагулянтными свойствами, что проявляется в нарушении свертываемости крови.Проявление токсичности лимитирует использование противоопухолевых агентов. Развитие осложнений приводит к необходимости снижения дозы цитостатиков или увеличению интервалов между курсами [25,40,43].1.2 Пептидергическая система организма1.2.1 Механизм образования активных форм регуляторных пептидов Активные формы пептидов представляют собой полифункциональную группу веществ, которым отводится важная роль природных биорегуляторов. Это природные или синтетические соединения, молекулы которых построены из остатков ?-аминокислот, соединенных между собой пептидными (амидными) связями C(O)-NH. Большинство регуляторных пептидов образуется из физиологически неактивных белков-предшественников, путем посттрансляционного процессинга [32]. Секретируемые белково-пептидные продукты синтезируются на мембраносвязанных рибосомах ЭПР. Благодаря наличию на N-конце сигнальной последовательности, состоящей из остатков гидрофобных аминокислот, обеспечивается транслокация пептида через мембраны ЭПР. В полости ЭПР отщепление этой последовательности осуществляется при участии сигнальной пептидазы. Далее процессинг осуществляется в ходе передвижения молекул пропептидов по гранулярному ЭПР, комплексу Гольджи и в секреторных везикулах [14,61]. Сначала под действием эндопептидаз образуются неактивные пептиды, содержащие со стороны С- или N-конца “лишние” остатки аминокислот, которые затем удаляются экзопептидазами с карбоксипептидазо-B- и аминопептидазо-B-подобной активностью [4]. Уровень биологически активных пептидов в организме в значительной степени определяется активностью ферментов их обмена, к которым в частности принадлежат АПФ и КПN [13,27,32]. В связи с этим, большой интерес представляет изучение активности данных ферментов у онкологических больных при химиотерапевтическом воздействии, которое прямо или косвенно влияет на какую-либо систему организма. 1.2.2 Роль биологически активных пептидов Область биологической активности пептидов чрезвычайно широка. Они влияют на состояние сердечно-сосудистой, иммунной, половой, эндокринной, пищеварительной и других систем, изменяют энергетический обмен в организме, участвуют в регуляции работы центральной нервной системы. КПN и АПФ играют важную роль в обмене ангиотензина и брадикинина [31,54]. Ангиотензины - пептиды, образующиеся в организме из белка плазмы ангиотензиногена. Почечный фермент ренин отщепляет от молекулы ангиотензиногена неактивный декапептид ангиотензин I. Другой фермент крови - АПФ - преимущественно в ткани легких отщепляет с карбоксильного конца молекулы ангиотензина I дипептид с образованием ангиотензина II. Ангиотезин II является физиологическим фактором роста клеток, обладает митогенными (учащающими деление) свойствами и, тем самым, стимулирует гиперплазию и пролиферацию клеток. Пептид повышает активность симпатоадреналовой системы, увеличивая синтез адреналина и обусловливая высвобождение норадреналина из окончаний симпатических нервов, что стимулирует гипертрофию сердца и сосудов. Ангиотензин II оказывает сильное сосудосуживающее действие, вызывает быстрое и длительное повышение артериального давления. Кроме того, он увеличивает синтез альдостерона, что сопровождается реабсорбцией натрия и воды. В надпочечниках из ангиотензина II образуется ангиотензин III, обладающий положительной инотропной активностью. Далее при участии аминопептидазы N образуется ангиотензин IV, предположительно, участвующий в регуляции гемостаза [31,36,41,54]. Брадикинин - полипептид, состоящий из 9 аминокислот. Брадикинин способен расширять просвет периферических и коронарных сосудов, снижать артериальное давление, способствует синтезу NО в эндотелии. Пептид повышает проницаемость капилляров, сокращает гладкую мускулатуру бронхов и других органов, вызывает болевой эффект. Он стимулирует синтез и освобождение простагландинов и фактора некроза опухолей ( TNFa ) в различных тканях, освобождение ряда интерлейкинов, способствует процессам репарации и обладает инсулиноподобным действием, стимулируя захват глюкозы периферическими тканями, модулирует передачу нервных импульсов в ЦНС и периферической нервной системе, изменяет состояние гематоэнцефалического барьера [13,52,63]. Брадикинин участвует в широком спектре физиологических и патофизиологических эффектов, и особенно в развитии воспаления [52]. Разрушение брадикинина обусловлено наличием в крови и тканях высокоактивных ферментов - кининаз, осуществляющих физиологический контроль уровня кининов. Наиболее важную роль в метаболизме брадикинина играют два фермента - кининаза I (Карбоксипептидаза N), и кининаза II (ангиотензинпревращающий фермент). 1.2.3 Ферменты обмена вазоактивных пептидов 1.2.3.1 Ангиотензинпревращающий фермент. Ангиотензинпревращающий фермент (КФ3.4.15.1, АПФ, ангиотензин - конвертирующий фермент, кининаза II, дипептидилкарбоксипептидаза I,) является ключевым ферментом, связывающим между собой ренин - ангиотензиновую и калликреин - кининовую системы. Фермент присутствует в плазме крови, нервных клетках, клетках почечных канальцев, сердечной мышце, матке, слюнных железах. Основная локализация в организме человека - эндотелий сосудистой стенки [3]. По структуре АПФ представляет собой гликопротеин, существующий в виде мембрано- связанной формы и являющийся интегральным белком. Молекула фермента, представляющая собой одну полипептидную цепь, локализована экстрацеллюлярно, гидрофобный трансмембранный участок включает 17 аминокислотных остатков и находится в положении 1230-1247, а внутриклеточный гидрофильный участок состоит из 30 остатков. Имеется и растворимая форма АПФ отличающаяся от мембраносвязанной отсутствием трансмембранного и внутриклеточного участков. Мембраносвязанная форма имеет молекулярную массу 170кДа и включает С- и- N-гомологичные домены, обладающие энзиматической активностью. Предполагается, что домены АПФ могут иметь разные функции в организме. Возможно, между N- и C-доменами имеется участок, доступный для ферментативного расщепления. Таким образом, N-домен может освобождаться или из находящегося в растворе полноразмерного фермента, или из мембраносвязанной формы, составляя С-домен на мембране [21]. В принципе такой процесс может происходить где угодно в организме. Вопрос о функциональной роли доменов до сих пор остается неясным. Однако полученные к настоящему времени данные об обнаружении эндогенных субстратов, специфичных для N-домена, и о разном взаимодействии ингибиторов АПФ с доменами, а также присутствие в организме однодоменных форм фермента свидетельствуют в пользу физиологической значимости доменов. Каждый из доменов содержит активный центр, которые отличаются по скорости гидролиза пептидов, по степени торможения специфичными ингибиторами АПФ [54,56].АПФ - металлопротеиназа, которая содержит в активном центре ион цинка и активируется ионами Сl-, NO3- ,SO42-, ингибируется соединениями, содержащими SH-группу, хелаторами (ЭДТА, о-фенантролин), брадикининпотенциирующим фактором (Ki = 40 нм), 2-меркаптоэтанолом. Кроме того, существуют специфические ингибиторы АПФ - каптоприл (К = 20 нм), лизиноприл (К= 3-10 нм), и эналаприл (К =25-35 нм) [4,20]. рН-Оптимум действия АПФ составляет 7,2-7,6. Препараты АПФ, выделенные из различных органов человека (легких, сердца, печени, мозга, плазмы крови) существенно не различались по следующим физико-химическим параметрам: молекулярной массе, изоэлектрической точке, рН-оптимуму, константе ингибирования известными ингибиторами АПФ. При этом их иммунологические и каталитические свойства могут быть различными [21]. При действии на физиологические субстраты АПФ может вызывать либо превращение неактивной формы в активную, инактивацию биологически активного пептида, либо трансформацию его активности. Так, участвуя в отщеплении С-концевого гистидиллейцина от ангиотензина I, он превращает его в физиологически активный ангиотензин II, инактивирует брадикинин путем последовательного удаления двух С-концевых дипептидов, расщепляет такие функционально активные пептиды, как мет-энкефалин, нейротензин, эндорфин, вещество Р, (действуя в этих превращениях как эндопептидаза), играя роль одного из регулирующих факторов в обмене этих биологически активных веществ [20,36,41]. АПФ принимает участие в процессинге энкефалинов, гидролизуя энкефалинсодержащие пептиды - Met-энкефалин-Arg6-Phe7 в мет-энкефалин и Met-энкефалин- Arg 6-Glu7-Leu8 в Met-энкефалин-Arg6 [4]. АПФ является физиологическим регулятором концентрации в плазме пептида AcSDKP (N-AcSer-Asp-Lys-Pro), влияющего на пролиферацию гемопоэтических и других клеток. Фермент участвует в регуляции артериального давления. Кроме того, он вовлечен в реализацию таких функций как репродуктивные процессы, защитные и иммунные реакции организма. Участие фермента в том или ином процессе определяется как его локализацией, так и особенностью действия на регуляторные пептиды [20,56]. Являясь фактором, связывающим ККС и РААС - систем, вовлеченных в регуляцию большинства функций организма, реагирует на изменения, возникающие при патологических процессах. В связи с этим представляет интерес изучение активности фермента у онкологических больных при химиотерапевтическом воздействии. Страницы: 1, 2 |
|
|||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |