бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Телефонные кабеля

Телефонные кабеля

ИСТОРИЯ ИЗОБРЕТЕНИЯ ТЕЛЕФОНА

1849-1854г. разработана идея телефонирования инженером-механиком вице

-инспектором парижского телеграфа Шарлем Бурселем.

1853-1860г. 26 октября 1861г. немецкий учитель физики из Франкфурта-на-

Майне Филипп Рейс (1834-1874г.) продемонстрировал устройство, названное им

телефоном. Передатчик представлял собой ящик с большим круглым отверстием в

верхней крышке, обтянутым тонкой перепонкой, к внутренней поверхности

которой была прикреплена платиновая пластинка. Под центром перепонки на

небольшом расстоянии от нее укреплялся платиновый контакт. При воздействии

звука на перепонку последняя колебалась, пластина то касалась контакта, то

отходила от него. Электрическая цепь замыкалась и размыкалась с частотой

воздействующего звука. Приемником служила проволочная катушка-соленоид с

сердечником в виде тонкой спицы, закрепленной с обоих концов. Под

воздействием пульсирующего магнитного поля спица колебалась и издавала

звук, который усиливался полым ящиком-резонатором, служившим опорой для

соленоида.

Умеренно громко спетая мелодия была отчетливо передана на расстояние

100 м. Прибор воспроизводил звуки фортепьяно и духовых инструментов.

Удавалось услышать отдельные невнятные звуки человеческой речи. Дело в том,

что аппарат, передававший прерывистые импульсы тока, мог воспроизводить

высоту и до некоторой

степени силу звука, но не его оттенки, характерные для человеческого голоса

и определяемые формой звуковых колебаний. Практического применения

изобретение Рейса не нашло.

Первый практически пригодный для передачи человеческой речи телефон

изобрел пятнадцатью годами позже Александр Грейам Белл (1847-1922).

Любопытно, что Белл пытался изобрести не телефон, а «гармонический

телеграф». В то время в телеграфии испытывался огромный дефицит линий.

Потребности в проводах воздушных линий связи значительно опережали

возможности сооружения последних. Поэтому предпринимались попытки по

одному линейному проводу передавать одновременно две или более депеш.

1837г. Американский физик Чарльз Графтон Пейдж (1812-1868) обнаружил

явление «гальванической музыки»: в электрической цепи, состоящей из

камертона, электромагнита и гальванического элемента, при колебаниях

камертона, размыкавших и замыкавших цепь, электромагнит издавал поющий

звук.

1869г. Русский физик Георгий Иванович Морозов (1836-1904) предложил

для одновременной передачи по одному проводу нескольких депеш метод

разночастотного телеграфирования. Реализовать свой метод ученый не смог, но

им заинтересовались другие.

Белл с 1873г. занимался этой проблемой. В качестве передающего и

приемного устройств использовал наборы металлических вибрирующих пластинок-

камертонов, настроенных каждый на одну музыкальную ноту. Контакты на концах

пластинок при вибрации последних соединялись или разъединялись с контактами

электрической цепи, и пропущенный через передающее устройство электрический

ток должен был прерываться. Предполагалось посылать по проводу одновременно

несколько «электронот» (до семи согласно нотной азбуке), то есть

электрический ток с частотами, соответствующими частотам выбранных нот. На

приемном конце каждый камертон вибрировал бы только при сигнале «своей»

частоты, а остальные сигналы игнорировал бы. Гармонический телеграф так и

не удалось создать. Зато во время одного из опытов, проводившихся Беллом с

Ватсоном 2 июня 1875г., свободный конец одной из пластинок на передающем

конце случайно застрял и, когда Ватсон безуспешно пытался его освободить,

Белл услышал на приемном конце слабые звуки, подобные тем, которые издает

натянутая струна. Застрявшая пластинка сработала как диафрагма. В прежних

опытах свободный конец пластинки просто размыкал и замыкал электрическую

цепь. Теперь вместо этого легкие колебания пластинки индуцировали

соответствующие электромагнитные колебания в расположенном под ней

передающем электромагните. Пульсирующий электрический ток протекал по цепи

к обмотке приемного электромагнита и заставлял тем самым колебаться его

пластинку. В этом оказалось принципиальная разница между будущим телефоном

и всеми телеграфными устройствами. Телеграф передавал строго ограниченные

импульсы электрического тока, обладающие одной и той же амплитудой, хотя и

различной продолжительностью. Для телефона необходим был непрерывный

электрический ток, сила и частота которого изменялись бы в точном

соответствии с колебаниями звуковых волн в воздухе.

14 февраля 1876г. А. Белл подал заявку в Вашингтонское патентное бюро

на свое изобретение: «Телеграф, при помощи которого можно передавать

человеческую речь». Двумя часами позже заявку на «Устройство для передачи и

приема вокальных звуков телеграфным способом» подал Э.Грей из Чикаго.

Буквально на следующий день после неожиданного открытия Белл с

Ватсоном собрали первый электрический телефон. В основном пункте патентного

описания предлагались «способ и устройство для телеграфной передачи

голосовых или других звуков посредством волнообразных электрических

колебаний, подобных по форме колебаниям воздуха, сопровождающим голосовые

или другие звуки» (вот тот «ключ» к телефонированию, которого недоставало

аппарату Рейса).

7 марта 1876г. был получен патент на изобретение телефона.

25 июня 1876г. Белл впервые продемонстрировал свой телефон на первой

Всемирной электротехнической выставке в Филадельфии.

Первое сообщение о телефоне было опубликовано 6 октября 1877г. в

научно-популярном еженедельнике «Scientific Ameriсan». Первая в мире

телефонная (воздушная) линия связала в 1877г. квартиру и канцелярию мэра

Бостона.

Первая в Европе телефонная линия (также воздушная) длиной 2 км была

сооружена 5 ноября 1877г. в Берлине между почтамтом и телеграфом.

В России в 1882г. телефонные станции были построены в городах: Москва,

Петербург, Одесса, Рига.

Телефон очень быстро распространялся по всему миру.

Как и большинство телеграфных линий того времени, первые телефонные

линии были воздушными. Попытки применения подземных кабелей были вызваны

стремлением заменить голые воздушные провода, т.к. улицы и крыши домов в

густонаселенных городах представляли собой уродливое зрелище из-за скопища

телефонных и телеграфных проводов. Столбовые линии, несущие провода, были

очень чувствительны к атмосферным воздействиям, вызывающим их повреждения.

Сооружение линий сильного тока для электроосвещения улиц, а затем для

городского трамвая также явилось серьезной помехой (вследствие индуктивного

влияния).

Первые телефонные семижильные кабели (скрюченные сердечники) – длиной

1000-1200м, также включенные по однопроводной системе, были проложены на

Бруклинском мосту в Нью-Йорке в 1880г.

В конце 1882г. в Бостоне два сердечника длиной 360 и 450м были

проложены от здания станции по направлению к абонентам в трехдюймовых

стальных трубах, покрытых бетоном.

Первый подземный кабель в России был проложен в 1885г. при

строительстве Нижегородской городской телефонной сети. Кабель из 10 жил

имел длину 1км.

Первый морской телефонный кабель соединил в 1891г. Англию и Францию.

ТЕЛЕФОННЫЕ КАБЕЛИ

Конструкция и технология 1869г.

Кабель является главным звеном линии связи, от конструкции кабеля

зависят в основном свойства линии. В первые пять лет становления телефонии

использовались конструкции и способы изготовления телеграфных подземных

кабелей. По способу 1869г., медные проволоки изолировались хлопчатобумажной

пряжей, предварительно вываренной в парафине. Пряжа накладывалась на

проволоку методом обмотки в двух противоположных направлениях. Требуемое

количество изолированных жил затягивалось в свинцовую трубу, которая затем

наматывалась на барабан, и все вместе помещалось в резервуар, заполненный

расплавленным парафином. Один конец свинцовой трубы подключался к

воздушному насосу, который прогонял через трубу парафин, вытеснявший при

этом воздух. Заключительными операциями были перемотка кабеля через

резервуар с холодной водой - при этом парафин, заполнивший свободные

промежутки в сердечнике, затвердевал – и протягивание через обжимную

волоку. Это был первый пример применения заполнителя для защиты от

проникновения влаги внутрь сердечника.

Конструкция и технология 1875г.

Хлопчатобумажная пряжа предварительно не проваривается в парафине.

Каждая жила с двухслойной, а иногда и трехслойной изоляцией сначала сушится

в печи (первое применение технологической операции сушки), затем

пропитывается в горячем парафине или парафиновом масле. Группа

изолированных жил обматывается джутом, пенькой или другим волокнистым

материалом и обрабатывается так же, то есть сушится и пропитывается, как

отдельные жилы. Готовый сердечник затягивается в железную или чугунную

трубу длиной 3-3,2 м диаметром 40 мм. Такая труба вмещает до 200

изолированных жил с медной проволокой диаметром 0,3-0,4 мм и имеет на

концах винтовую нарезку. Один конец трубы заделывается Т-образным

соединителем, на другой временно навинчивается колпачок. Промежутки между

сердечником и стенками трубы и внутри сердечника заполняются через Т-

образный соединитель парафиновым маслом. При прокладке линии конец

строительной длины, с которого свинчивается колпачок, вводится в

соединитель предыдущей строительной длины, где сращиваются жилы. После

окончания монтажа Т-образный соединитель высушивается нагревом, заполняется

парафиновым маслом и герметизируется. Для поддержания уровня масла в линии

предусматривались вертикальные отрезки труб, соединенные с масляными

баками, расположенными на возвышенных местах.

Налицо другой, более сложный способ защиты изоляции жил от влаги

посредством не твердого, а жидкого заполнения. Отказ от свинцовой трубы был

вызван мягкостью свинца, его небольшой механической прочностью.

В 1880г. проведена первая опытная сушка волокнистой изоляции жил под

вакуумом.

Следующим шагом, переходным от телеграфных к собственно телефонным

кабелям, явилось предложение содержать кабельные линии с целью защиты от

влаги под избыточным давлением не масла, а воздуха или газа. Смысл идеи

состоял в том, что при возникновении дефекта уплотнения в месте сращивания

труб находящийся под давлением газ будет препятствовать проникновению влаги

из атмосферы внутрь трубы.

Идея о применении воздуха явилась решающей ступенью прогресса в

области кабелей связи.

Конструкции и технологии 1880-х годов.

В 1882г. была предложена конструкция изоляции жил, частично состоявшей

из воздуха, благодаря чему электрическая емкость кабелей несколько

уменьшилась. Токопроводящая жила обматывалась по открытой спирали корделем

- крученой волокнистой нитью, поверх которой накладывалось также спирально

несколько лент из влагонепроницаемой пропитанной каучуковым соком бумаги.

Так год 1882-й стал годом рождения современной кордельно-ленточной

изоляции.

В 1884г. было предложено оригинальное решение. Внутрь свинцовой трубы

с затянутым в нее сердечником вводился расплавленный парафин вместе с газом

под давлением. Охлажденный парафин приобретал пористость, что понизило

емкость кабеля почти на 15%. В известной мере это был прообраз современной

пористой полиэтиленовой изоляции. Автор конструкции снова вернулся к

свинцовым трубам, но уже не из чистого металла, а из сплава свинца с

цинком, который добавлялся для повышения механической прочности.

В 1880г. из-за помех при одновременном соединении нескольких абонентов

было предложено отказаться от однопроводных несимметричных цепей с

использованием в качестве обратного провода земли и перейти на симметричные

цепи из двух жил. Первая конструкция скрученной двухпроводной цепи была

предложена в 1881г., правда осуществлялась не взаимная скрутка, а

спиральная обмотка одной жилы другой. Для устранения образующегося при этом

неравенства электрических сопротивлений обеих жил предлагалось в местах

соединения скрещивать прямолинейную жилу со спиральной. Современная скрутка

жил в пары начала применяться с 1882г.

В 1886г. С.Ф.Шелбурн (США) запатентовал оригинальное инженерное

решение. Он предложил скручивать одновременно четыре жилы, но составлять

цепи не из рядом лежащих, а из противолежащих жил, то есть расположенных по

диагоналям образованного в поперечном сечении квадрата. Эффект четверки

состоит в том, что без изменения конструкции жил и увеличения расхода

материалов только за счет способа скрутки удается получить на 10-15%

меньшую емкость, и, следовательно меньший коэффициент ослабления. Рис.

стр. 170

Событием в технологии кабельного производства явилось изобретение и

внедрение пресса, позволяющего накладывать свинцовую оболочку на движущийся

поступательно сердечник.

Первая конструкция пресса 1879г. оказалась непрактичной. На нем можно

было опрессовывать относительно небольшую длину кабеля, на оболочку которой

хватало одного слитка свинца. После выдавливания слитка сердечник

приходилось разрезать.

В 1880-1881г. были предложены более совершенные конструкции прессов;

горизонтального-двухконтейнерного и вертикального-одноконтейнерного,

допускающих опрессование целиком строительной длины кабеля с периодическими

остановками для загрузки в контейнеры очередного слитка свинца. Эти прессы

можно назвать прообразами современных свинцовых и алюминиевых прессов.

Окончательно конструкция свинцового поршневого гидравлического

кабельного пресса была усовершенствована и внедрена к 1885г. В начале того

же года В. Сименсом была изобретена кабельная броня из стальных лент. На

основании вышесказанного можно считать, что именно 1885-й год началом

промышленного кабельного производства и одновременно началом эры подземных

кабелей, имеющих все необходимые составные части: токопроводящие жилы,

изоляцию (независимо от того, из какого она материала), влагозащитную

свинцовую оболочку и при необходимости броневой защитный покров.

Конструкции и технологии 1890-х годов

Предложенная в 1882г. изоляция из хлопчатобумажного корделя, воздуха и

пропитанной каучуком бумаги привлекла внимание к последней, и на

промышленном рынке появилась бумага в виде узких лент. В 1886-1889гг.

проводились опыты по применению лент из сухой манильской бумаги, которые

накладывались на жилу в виде спиральной обмотки с перекрытием кромок.

Наличие герметичной влагонепроницаемой свинцовой оболочки позволило

отказаться от пропитки изоляции или введения внутрь кабеля гидрофобного

парафинового заполнения. Благодаря усовершенствованию ленто-обмоточных

машин стало возможным накладывать бумажную изоляцию на жилу не плотно, а

свободно, в виде полой трубки, оставляя между ней и жилой воздушный

промежуток.

Первый освинцованный кабель с воздушно-бумажной изоляцией был

изготовлен в 1889г., проложен и сдан в эксплуатацию в Нью-Йорке в 1890г. С

1891г. и до середины текущего столетия воздушно-бумажная изоляция в ее

различных вариантах была единственным типом изоляции кабелей связи. Не

потеряла она своего значения и в наше время.

Успех воздушно-бумажной изоляции, обусловленный тем, что электрическая

емкость кабелей уменьшилась втрое, стимулировал поиски различных способов

ее наложения на жилу. К 1892г. относится удачная попытка накладывать

бумажную ленту не спирально, а продольно и посредством специального

улитообразного калибра заворачивать ее вокруг жилы в форме треугольника и

скреплять кромки фальцованным швом. В конструкции жилы 1897г. продольно

наложенная бумажная трубчатая изоляция формируется посредством обжимного

устройства так, что вокруг жилы образуются винтообразные бумажные гофры,

центрирующие проволоку. Сразу же вслед за гофрированием изоляция

скрепляется нитью, накладываемой по спирали во впадины гофров. Изоляция

была названа «баллонной». Технологически сложный способ образования

баллонно-бумажной изоляции, скрепленной нитью, не привился.

По аналогичной причине также не был внедрен способ образования

баллонно-полиэтиленовой изоляции методом спиральной обмотки ее

самоусаживающимся полиэтиленовым корделем. В то же самое время, баллонно-

полиэтиленовая изоляция, накладываемая методом экструдирования на жилу

полой трубки с последующим образованием на ней периодических поперечных

пережимов путем механического сдавливания, прочно укоренилась в конструкции

одного из типов современных кабелей связи.

В 1892г. была освоена кордельно-бумажная изоляция. Кордель скручивался

не из кабельной пряжи, а из тонкой (толщиной 0,004 мм) бумаги. Поверх

открытой спирали из корделя на жилу накладывались в противоположных

направлениях две бумажные ленты. Максимальное число цепей в кабелях 1880-х

годов было невелико – всего 50. Диаметр токопроводящих жил с

первоначального «телеграфного» 0,3-0,4 мм был увеличен до 1-1,5 мм, чтобы

обеспечить связь телефонной станции со всеми обслуживаемыми ею абонентами.

Таким образом, к началу ХХ века была создана оригинальная конструкция

телефонных кабелей и освоена технология их промышленного производства.

Городские кабели

1.Материалы.

Жилы изготовляют из меди. Но медь-металл дефицитный, а потребность в

нем все возрастает. Расход огромный. Поэтому на протяжении многих лет

ведутся поиски металла, который бы заменил в кабелях медь.

Кандидат номер один – алюминий. Однако, если заменить медные жилы

алюминиевыми такого же диаметра, то в результате этого увеличится наружный

диаметр кабеля, что явно нежелательно из-за ограниченного диаметра канала

трубопровода, возрастет расход изоляционного и защитных материалов.

Алюминий значительно уступает меди по механическим свойствам:

разрывной прочности, пластичности, стойкости к многократным изгибам.

Прочность на разрыв мягких алюминиевых проволок втрое, а относительное

удлинение вдвое меньше, чем мягких медных. Самый большой недостаток

алюминия - сильная подверженность коррозии, особенно в присутствии влаги,

которая может попасть в кабель при повреждении оболочки или муфт. В этом

случае алюминиевые жилы очень быстро разрушаются.

Алюминиевые сплавы по своим механическим свойствам занимают

промежуточное место между медью и алюминием, а по электрическим близки к

алюминию.

В последние годы привлекает внимание алюмомедная проволока. Это

-алюминиевая проволока, покрытая тонким медным слоем толщиной всего 10-30

микрометров (0,01-0,03 мм). По своим свойствам биметаллическая проволока

стоит ближе к меди, чем алюминиевый сплав, однако изготовить ее значительно

сложнее. При незначительных дефектах столь тонкого медного покрытия, в

присутствии влаги она корродирует еще сильнее, чем алюминиевая.

2.Изоляция

Виды: 1) Трубчато-бумажная

2) Бумаго-массная (Стр.194)

3) Сплошная полиэтиленовая

Хронологически третьим, но, пожалуй, сегодня первым по значимости

типом изоляции современных городских телефонных кабелей является сплошная

полиэтиленовая. Благодаря редкому сочетанию отличных электроизоляционных,

физико-механических и химических свойств полиэтилен получил в кабельной

технике широкое распространение. Главным среди многих преимуществ

полиэтиленовой изоляции перед трубчато-бумажной и бумаго-массной является

ее негигроскопичность. Полиэтилен не поглощает влагу. Применение не

боящейся увлажнения полиэтиленовой изоляции позволило отказаться от

обязательной свинцовой оболочки и заменить ее пластмассовой, также

полиэтиленовой. Несмотря на перечисленные выше достоинства полиэтилена,

оказалось, что эквивалентная диэлектрическая проницаемость у полиэтиленовой

изоляции выше. В результате – увеличение рабочей емкости сплошной

полиэтиленовой изоляции по сравнению с воздушно-бумажной и, следовательно,

коэффициента ослабления кабелей. Чтобы сохранить рабочую емкость

неизменной, приходится несколько увеличивать толщину изоляции и, значит,

диаметр кабелей.

Противоречие разрешила пористая полиэтиленовая изоляция. Если в

полиэтилен в процессе его наложения на жилу посредством выдавливания на

червячных процессах – экструдерах добавить гранулы пенообразующих веществ

–порофоров, то при нагревании изоляции в головке экструдера, где

температура 200-230(С, порофоры разлагаются с выделением летучих

составляющих. В изоляции образуются не сообщающиеся между собой поры

размером 20-100 мкм.

Благодаря воздуху в своем составе пористая полиэтиленовая изоляция

сравнялась по электрическим и конструктивным параметрам с воздушно-

бумажной. Однако, существуют три «но» пористой полиэтиленовой изоляции

сравнительно со сплошной: большая влагопоглощаемость, которая может

привести к потере электроизоляционных свойств, меньшая электрическая

прочность, меньшая механическая прочность.

В 1964г. английский инженер Георг Додд предложил заполнять свободный

объем кабелей, на долю которого приходится около 40( общего объема

сердечника, вязким компаундом на основе продуктов перегонки нефти –

петролатумом, или «нефтяным желе» из смеси микрокристаллических нефтяных

парафинов и масел. Опыт эксплуатации показал, что петролатум действительно

не пускает влагу в кабель, но сам не прочь пообщаться с пористой изоляцией,

проникнуть насколько возможно в ее поры. Подобное взаимодействие приводит к

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.