бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Системный анализ и проблемы принятия решений

Системный анализ и проблемы принятия решений

МОСКОВСКАЯ АКАДЕМИЯ МВД РОССИИ

КАФЕДРА ИНФОРМАТИКИ И МАТЕМАТИКИ

РЕФЕРАТ

ТЕМА № 19:

Системный анализ и проблемы принятия решений.

ВЫПОЛНИЛ: Слушатель 3-

го курса 311 учебной

группы

заочной формы

обучения

МА МВД

России

лейтенант юстиции

Трофимов А.А.

МОСКВА 2000г.

ПЛАН РАБОТЫ:

1. СИСТЕМНЫЙ АНАЛИЗ.

2. АКСИОМАТИКА СИСТЕМНЫХ СВОЙСТВ.

3. СИСТЕМНЫЙ АНАЛИЗ И ПРОБЛЕМЫ ПРИНЯТИЯ РЕШЕНИЙ.

4. ОПЕРАЦИЯ. ЭФФЕКТИВНОСТЬ ОПЕРАЦИИ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ.

5. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ.

6. ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ДЕТЕРМИНИРОВАННЫЙ СЛУЧАЙ.

7. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ОПТИМИЗАЦИЯ РЕШЕНИЯ В

УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ.

СИСТЕМНЫЙ АНАЛИЗ И ЕГО ОСНОВНЫЕ СОСТАВЛЯЮЩИЕ:

Системный анализ

- Совокупность методологических средств, обеспечивающих

решение сложных проблем политического, социального,

экономического, правового и т. д. характера.

- Системный анализ базируется на ряде прикладных

математических дисциплин, в частности на исследовании

операций.

- Примерами задач, решаемых с помощью методов

исследований операций и математического

программирования, являются:

1.Разработка высокоэффективных методов управления людьми

и техникой.

2.Определение и обоснование целей функционирования

системы.

- Исследование операций - наука, вырабатывающая решения

во всех областях деятельности человека.

Разработка методов использования имеющейся техники,

обеспечивающей выполнение поставленной задачи с

минимальными затратами и с максимальной эффективностью.

ОСНОВНЫЕ СИСТЕМНЫЕ ПОНЯТИЯ

Аксиоматика системных свойств

Система - совокупность элементов, объединенных общей

функциональной средой и целью функционирования.

Функциональная среда системы - характерная для системы

совокупность законов, алгоритмов и параметров, по

которым осуществляется взаимодействие между элементами

системы и функционирование системы в целом.

Элемент системы - условно неделимая, самостоятельно

функционирующая часть системы.

Компонент системы - множество относительно однородных

элементов, объединенных общими функциями при обеспечении

выполнения общих целей развития системы.

Структура системы - совокупность связей, по которым

обеспечивается энерго-, массо- и информационный обмен

между элементами системы, определяющий функционирование

системы в целом и способы ее взаимодействия с внешней

средой.

Примером сложной системы является Министерство

внутренних дел, сложной как по своей структуре, так и

характеру выполняемых министерством задач: обеспечение

безопасности страны и отдельных граждан в совместной

деятельности с другими правоохранительными системами

страны.

Функциональную среду правоохранительной системы

составляют: конституция страны, законодательные акты,

УПК и другие нормативные документы. Эти законы

определяют возможную динамику взаимосвязей между

службами и подразделениями министерства различными

документами, не позволяющими данным элементам

развиваться во вред целому.

Системное рассмотрение правоохранительных органов

позволяет представить каждую систему как подсистему

системы более высокого уровня. Тогда специфику каждой из

них определяют те ее свойства, которые важны именно с

точки зрения функционирования системы более высокого

уровня. При этом данные свойства оценивают

рассматриваемую подсистему в целом и имеют общий,

интегральный по отношению к ней характер. Такие свойства

называются системообразующими факторами, или

интегральными свойствами системы.

Таким образом, рассматривая любой системный объект, его

необходимо выделить как целостное образование, обращая

внимание, во-первых, на интегральные свойства, важные с

точки зрения его специфики как компонента системы

следующего (более высокого) уровня. Во-вторых, следует

определить составные части рассматриваемого объекта и

изучить обобщенную структуру их взаимодействия,

характеризующую интегральные свойства.

Системное изучение различных объектов имеет, в

частности, научно-организационное значение. В настоящее

время выработка управленческих решений, особенно

большого масштаба, сама по себе зачастую представляет

серьезную научную проблему. Для ее решения применяется

ЭВМ.

Системное представление объектов, разделение их на

подсистемы, ограничение учитываемых характеристик только

интегральными показателями, построение обобщенной

структуры объектов и другие аналогичные приемы резко

снижают размерность математических моделей, применяемых

в прикладных целях. Предварительная системная

структуризация объектов и проблем управления -

практически единственная возможность конструктивно

применить для их решения математические методы с

использованием средств вычислительной техники.

В соответствии с законом адаптации реакции системы на

внешнее воздействие в первую очередь направлены на то,

чтобы уменьшить отрицательные последствия этого

воздействия.

СИСТЕМНЫЙ АНАЛИЗ И ПРОБЛЕМЫ ПРИНЯТИЯ РЕШЕНИЙ

Построение модели интересующего исследователя процесса

или явления не всегда возможно. Выработка управленческих

решений при невозможности создания, например,

динамических, игровых и иных количественных моделей, с

помощью которых отрабатывались рациональные и

оптимальные элементы управления в самом широком значении

этого термина, привела к появлению в рамках системного

анализа направления, касающегося принятия решений в

условиях так называемого уникального выбора.

Процесс уникального выбора характеризуется тремя

необходимыми условиями: наличием проблемы, требующей

разрешения;

наличием лица или группы лиц, принимающих решение;

несколькими вариантами, из которых осуществляется выбор.

При отсутствии хотя бы одной из этих составляющих

процесса выбора нет.

Трудные, нестандартные, по-своему уникальные процессы и

явления характеризуются рядом моментов.

Многокритериальный характер наиболее актуальных проблем.

Обычно не удается сводить оценку каждой из предложенных

альтернатив к какому-либо одному численному показателю,

например к определению сил и средств на выполнение

правоохранительных мероприятий. Необходимо одновременно

оценивать каждую альтернативу по многим

показателям.__________

Субъективизм оценок качества альтернатив (тем более в

многокритериальном случае.

Неопределенность в полноте списка альтернатив. Всегда

можно спросить: "А все ли возможные варианты решения

были рассмотрены?" Такого рода трудности делают процесс

решения проблем уникального выбора весьма непростым и

характеризуемым постоянным повышением "цены ошибки".

ОСНОВНЫЕ ПОНЯТИЯ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ

1. ОПЕРАЦИЯ. ЭФФЕКТИВНОСТЬ ОПЕРАЦИИ

Под операцией мы будем понимать любое мероприятие

(или систему действий), объединенное единым замыслом и

направленное к достижению определенной цели.

Примеры операций.

1. Система мероприятий, направленная к повышению

надежности технического устройства.

2. Отражение воздушного налета средствами ПВО.

3. Размещение заказов на производство

оборудования.

4. Разведывательный поиск группы самолетов в тылу

противника.

5. Запуск группы искусственных спутников Земли

для установления системы телевизионной связи.

6. Система перевозок, обеспечивающая снабжение

ряда пунктов определенного вида товарами.

Операция всегда является управляемым

мероприятием, т. е. от нас зависит выбрать тем или

другим способом какие-то параметры, характеризующие

способ ее организации. «Организация» здесь понимается в

широком смысле слова, включая и выбор технических

средств, применяемых в операции. Например, организуя

отражение воздушного налета средствами ПВО, мы можем, в

зависимости от обстановки, выбирать тип и свойства

применяемых технических средств (ракет, установок) или

же, при заданных технических средствах, решать только

задачу рациональной организации самой процедуры

отражения нa^eтa (распределение целей между установками,

количество ракет, направляемых на каждую цель и т. д.).

Всякий определенный выбор зависящих от нас

параметров мы будем называть решением.

Решения могут быть удачными и неудачными,

разумными и неразумными. Оптимальными называются

решения, которые, по тем или иным соображениям,

предпочтительнее других.

Основная задача исследования

операций—предварительное количественное обоснование

оптимальных решений.

Заметим, что само принятие решения выходит за

рамки исследования операций и относится к компетенции

ответственного лица (или группы лиц), которым

предоставлено право окончательного выбора. При этом

выборе ответственные за него лица могут учитывать,

наряду с рекомендациями, вытекающими из математического

расчета, еще ряд соображений (количественного и

качественного характера), которые не были учтены

расчетом.

Таким образом, исследование операций не ставит

себе задачей полную автоматизацию принятия решений,

полное исключение из этого процесса размышляющего,

оценивающего, критикующего человеческого сознания. В

конечном итоге, решение всегда принимается человеком

(или группой лиц); задача исследования операций —

подготовить количественные данные и рекомендации,

облегчающие человеку принятие решения*).

*) Даже в тех случаях, когда принятие решения,

казалось бы, полностью автоматизировано (например, в

процессе автоматического управления предприятием или

космическим кораблем), роль человека не устраняется,

ибо, в конечном счете, от него зависит выбор алгоритма,

по которому осуществляется управление.

Наряду с основной задачей — обоснованием

оптимальных решений — к области исследования операций

относятся и другие задачи, такие как

— сравнительная оценка различных вариантов

организации операции;

— оценка влияния на результат операции различных

параметров (элементов решения и заданных условий);

— исследование так называемых «узких мест», то

есть элементов управляемой системы, нарушение работы

которых особенно сильно сказывается на успехе операции,

и т. д.

Эти «вспомогательные» задачи исследования

операций приобретают особую важность, когда мы

рассматриваем данную операцию не изолированно, а как

составной элемент целой системы операций. Так называемый

«системный» подход к задачам исследования операций

требует учета взаимной зависимости и обусловленности

целого комплекса мероприятий. Разумеется, в принципе

всегда можно объединить систему операций в одну сложную

операцию более «высокого порядка», но на практике это не

всегда удобно (и не всегда желательно), и в ряде случаев

целесообразно выделять в качестве «операций» отдельные

элементы системы, а окончательное решение принимать с

учетом роли и места данной операции в системе.

Итак, рассмотрим отдельную операцию О. Размышляя

над организацией операции, мы стремимся сделать ее

наиболее эффективной. Под эффективностью операции

разумеется степень ее приспособленности к выполнению

стоящей перед ней задачи. Чем лучше организована

операция, тем она эффективнее.

Чтобы судить об эффективности операции и

сравнивать между собой по эффективности различно

организованные операции, нужно иметь некоторый численный

критерий оценки или показатель эффективности (в

некоторых руководствах показатель эффективности называют

«целевой функцией»).

Будем в дальнейшем обозначать показатель

эффективности буквой W.

Конкретный вид показателя эффективности W, которым

следует пользоваться при численной оценке эффективности,

зависит от специфики рассматриваемой операции, ее

целевой направленности, а также от задачи исследования,

которая может быть поставлена в той или другой форме.

Многие операции выполняются в условиях,

содержащих элемент случайности (например, операции,

связанные с колебаниями спроса и предложения, с

движением народонаселения, заболеваемостью, смертностью,

а также все военные операции). В этих случаях исход

операции, даже организованной строго определенным

образом, не может быть точно предсказан, остается

случайным. Если это так, то в качестве показателя

эффективности W выбирается не просто характеристика

исхода операции, а ее среднее значение (математическое

ожидание). Например, если задача операции — получение

максимальной прибыли, то в качестве показателя

эффективности берется средняя прибыль. В других случаях,

когда задачей операции является осуществление вполне

определенного события, в качестве показателя

эффективности берут вероятность этого события (например,

вероятность того, что в результате воздушного налета

данная группа целей будет поражена).

Правильный выбор показателя эффективности —

необходимое условие полезности исследования,

применяемого для обоснования решения.

Рассмотрим ряд примеров, в каждом из которых

показатель эффективности W выбран в соответствии с

целевой направленностью операции.

Пример 1. Рассматривается работа промышленного

предприятия под углом зрения его рентабельности, причем

проводится ряд мер с целью повышения этой рентабельности

Показатель эффективности — прибыль (или средняя

прибыль), приносимая предприятием за хозяйственный год

Пример 2 Группа истребителей поднимается в воздух

для перехвата одиночного самолета противника Цель

операции — сбить самолет. Показатель эффективности —

вероятность поражения (сбития) самолета

Пример 3. Ремонтная мастерская занимается

обслуживанием машин; ее рентабельность определяется

количеством машин, обслуженных в течение дня. Показатель

эффективности — среднее число машин, обслуженных за день

(«среднее» потому, что фактическое число случайно)

Пример 4. Группа радиолокационных станций в

определенном районе ведет наблюдение за воздушным

пространством. Задача группы — обнаружить любой самолет,

если он появится в районе Показатель эффективности —

вероятность обнаружения любого самолета, появившегося в

районе.

Пример 5. Предпринимается ряд мер по повышению

надежности электронной цифровой вычислительной машины

(ЭЦВМ). Цель операции — уменьшить частоту появления

неисправностей («сбоев») ЭЦВМ, или, что равносильно,

увеличить средний промежуток времени между сбоями

(«наработку на отказ»). Показатель эффективности —

среднее время безотказной работы ЭЦВМ (или среднее

относительное время исправной работы).

Пример 6. Проводится борьба за экономию средств

при производстве определенного вида товаров. Показатель

эффективности—количество (или среднее количество)

сэкономленных средств.

Во всех рассмотренных примерах показатель

эффективности, каков бы он ни был, требовалось обратить

в максимум («чем больше, тем лучше»). Вообще, это не

обязательно: в исследовании операций часто пользуются

показателями, которые требуется обратить не в максимум,

а в минимум («чем меньше, тем лучше»). Например, в

примере 4 можно было бы в качестве показателя

эффективности взять «вероятность тоге, что появившийся

самолет не будет обнаружен» — этот показатель желательно

сделать как можно меньше. В примере 5 за показатель

эффективности можно было бы принять «среднее число сбоев

за сутки», которое желательно минимизировать. Если

оценивается какая-то система, обеспечивающая наведение

снаряда на цель, то в качестве показателя эффективности

можно выбрать среднее значение «промаха» снаряда

(расстояния от траектории до центра цели), которое

желательно сделать как можно меньше. Наряд средств,

выделяемых на выполнение какой-либо задачи, тоже

желательно сделать минимальным, равно как и стоимость

предпринимаемой системы мероприятий. Таким образом, во

многих задачах исследования операций разумное решение

должно обеспечивать не максимум, а минимум некоторого

показателя.

Очевидно, что случай, когда показатель

эффективности W надо обратить в минимум, легко сводится

к задаче максимизации (для этого достаточно, например,

изменить знак величины W). Поэтому в дальнейшем,

рассматривая в общем виде задачу исследования операций,

мы будем для простоты говорить только о случае, когда W

требуется обратить в м а к с и м у м. Что касается

практических конкретных задач, то мы будем пользоваться

как показателями эффективности, которые требуется

максимизировать, так и теми, которые требуется

минимизировать.

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПЕРАЦИИ

Для применения количественных методов

исследования в любой области всегда требуется построить

ту или другую математическую модель явления. Me

составляет исключения и исследование операций. При

построении математической модели явление (в нашем случае

— операция) каким-то образом упрощается,

схематизируется; из бесчисленного множества факторов,

влияющих на явление, выделяется сравнительно небольшое

количество важнейших, и полученная схема описывается с

помощью того или другого математического аппарата. В

результате устанавливаются количественные связи между

условиями операции, параметрами решения и исходом

операции — показателем эффективности (или показателями,

если их в данной задаче несколько).

Чем удачнее подобрана математическая модель, тем

лучше она отражает характерные черты явления, тем

успешнее будет исследование и полезнее — вытекающие из

него рекомендации.

Общих способов построения математических моделей

не существует. В каждом конкретном случае модель

строится, исходя из целевой направленности операции и

задачи научного исследования, с учетом требуемой

точности решения, а также точности, с какой могут быть

известны исходные данные.

Требования к модели противоречивы. С одной

стороны, она должна быть достаточно полной, т. е. в ней

должны быть учтены все важные факторы, от которых

существенно зависит исход операции. С другой стороны,

модель должна быть достаточно простой для того, чтобы

можно было установить обозримые (желательно—

аналитические) зависимости между входящими в нее

параметрами. Модель не должна быть «засорена» множеством

мелких, второстепенных факторов — их учет усложняет

математический анализ и делает результаты исследования

трудно обозримыми.

Одним словом, искусство составлять математические

модели есть именно искусство, и опыт в этом деле

приобретается постепенно. Две опасности всегда

подстерегают составителя модели: первая - утонуть в

подробностях («из-за деревьев не увидеть леса»); вторая

- слишком огрубить явление («выплеснуть из ванны вместе

с водой и ребенка»). В сложных случаях, когда построение

модели вызывает наибольшее сомнение, полезным

оказывается своеобразный «спор моделей», когда одно и то

же явление исследуется на нескольких моделях. Если

научные выводы и рекомендации от модели к модели

меняются мало, это — серьезный аргумент в пользу

объективности исследования. Характерным для сложных

задач исследования операций является также повторное

обращение к модели: после того, как первый цикл

исследований выполнен, возвращаются снова к модели и

вносят в нее необходимые коррективы.

Построение математической модели — наиболее

важная и ответственная часть исследования, требующая

глубоких знаний не только и не столько в математике,

сколько в существе моделируемых явлений. Однако раз

созданная удачная модель может найти применение и далеко

за пределами того круга явлений, для которого она

первоначально создавалась. Так, например, математические

модели массового обслуживания нашли широкое применение в

целом ряде областей, далеких, с первого взгляда, от

массового обслуживания (надежность технических

устройств, организация автоматизированного производства,

задачи ПВО и др.). Математические модели, первоначально

предназначенные для описания динамики развития

биологических популяций, находят широкое применение при

описании боевых действий и наоборот — боевые модели с

успехом применяются в биологии.

Математические модели, применяемые в настоящее

время в задачах исследования операций, можно грубо

подразделить на два класса:

а н а л и т и ч е с к и е и с

т а т и с т и ч е с к и е.

Для первых характерно установление формульных,

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.