бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Курсовая: Электроснабжение аэропортов

Для первого периода следует определить усредненный коэффициент нагрузки К1=0,68. где ti – время, для которого справедливо неравенство Sнг i < Sном * К2’=1,1198 где ti – время, для которого справедливо неравенство Sнг i > Sном * 0.9Sнгmax/Sном=1,01< К2’ =1,12 Кгр= К2’=1,12 t2=h2=∑hi=4 Kз=Sнгmax/n×Sном тр=1,12 Средняя температура окружающей среды зимняя для Симферополя –1,8ºС, учитывая установку трансформаторов внутри подстанции (то есть в помещении), среднюю температуру (зимнюю) увеличиваем на 10ºС, и она будет 8,2ºС. Берем θохл=10ºС К2 табл=1,4 › К2 расч=1,12 Значит, трансформатор ТМ-25 выдержит запланированные систематические перегрузки. Аналогичным образом производим расчет остальных одно-трансформаторных подстанций. Результаты, полученные в ходе вычислений заносим в таблицу 3. 2. Рассмотрим пример для двух трансформаторных подстанций, для ТП2 (РСБН-У). Sнг.max=47 кВА Для двух трансформаторных подстанций мощность трансформатора должна быть S тр ≥ Sнг.max/2=47/2=23,5 кВА Выбираем трансформаторы ТМ-25. Для двух трансформаторных подстанций, как правило, более тяжелыми является послеаварийный режим, когда вся нагрузка приходится на один трансформатор. Расчет ведется по суточному графику нагрузки (рисунок 2) и рассчитывается К 1, К2, t2. Sном= Sтр/ Sнг max=25/47=0,523 Коэффициент нагрузки: К1=0,851 Коэффициент перегрузки: К2’=1,47 Так как расчетное значение: К2’=0,9 × Sнг max/ Sном=0,9 × 4,7/25=1,692, то принимаем: Кгр=1,692 t2=12,08 К2табл=1,4 К2расч › К2табл=1,4 Кз=47/(2 × 25)=0,94 Трансформатор ТМ-25 не выдержит систематических перегрузок, берем ТМ-40. Sном=40/47=0,851 Коэффициент нагрузки: К1=0,851 Коэффициент перегрузки: К2’=1,47 0,9 × Sнг max/ Sном=0,9 × 47/40=1,06 К2расч =1,18 t2=h2=∑hi=4 К2табл =1,6 Кз=47/(2 × 40)=0,59 К2табл ›К2расч Трансформатор ТМ-40 выдержит систематические перегрузки. Аналогичным образом производим расчет остальных двух трансформаторных подстанций. Полученные результаты заносим в таблицу 3. Таблица 3
№,ТПОбъект, питаемый от ТП

Sнг max

Кол-во тр-овТип тр-ра

Кз

К1

t2

К2’

К2табл

1.ЦИП363421
2.РСБН-У471ТМ-400,590,7241,181,6
3.ОПР-Л642ТМ-630,510,6241,021,6
4.КДП682ТМ-630,540,6641,081,6
5.Водопровод1612ТМ-1600,50,6241,011,6
6.УКВ-пеленг1462ТМ-1000,730,75111,231,4
7.Посад. пав-н6792ТМ-6300,540,6641,081,6
8.Котельная7162ТМ-6300,570,6941,141,6
9.Склад ГСМ4282ТМ-4000,540,6641,081,6
10.Автобаза5502ТМ-4000,690,7961,31,5
11.Ангар7152ТМ-6300,570,6941,141,6
12.БПРМ321ТМ-251,280,70461,221,29
13.ДПРМ281ТМ-251,120,6141,121,41
7. Выбор питающих трансформаторов. При выборе питающих трансформаторов необходимо учесть, что наиболее тяжелым для них является ПАР, когда вся нагрузка приходится на один трансформатор. Следовательно, выбор питающих трансформаторов производим по ПАР. Sнг.max=3634 кВА Котн.нг=0,55 Sнг= Sнг.max/Котн.нг=3634/0,55=6607 кВА Ориентировочная мощность: Sтр≥Sнг/2·Кз.мах=6607/2·0,8=2643 кВА Для ЦИП выбираем трансформаторы: ТМН-6,3: ВН=115 кВ; НН=6,3 кВ; Рхх=13 кВт; Ркз=50 кВт; Iхх=1%; Uк=10,5%; ТМН-6,3: ВН=53 кВ; НН=6,3 кВ; Рхх=9,4 кВт; Ркз=46,5 кВт; Iхх=0,9%; Uк=7,5%; 8.Расчет потерь напряжения и мощности в трансформаторах. Так как трансформаторы имеют значительное внутреннее сопротивление, то имеем потери напряжения в трансформаторе. Потери напряжения наиболее удобно определять в относительных величинах. ΔUт*=Rт**Pнг*+Хт**Qнг* Rт* – активное относительное сопротивление тр-ра: Rт*=Pr/Sном Хт*– относительное индуктивное сопротивление тр-ра Курсовая: Электроснабжение аэропортов Pнг* и Qнг*– относительные активная и реактивная нагрузки: Pнг*= Pнг/Sном.тр Qнг*= Qнг/Sном.тр Трансформаторы являются потребителями реактивной мощности: Курсовая: Электроснабжение аэропортов Sнг*=Sнг.мах/Sном Потери активной мощности: ΔP=P0+Pk*Sнг*² Рассмотрим пример расчета для ТП2: Рк=0,88 кВт; Р0=0,17 кВт; Uк=4,5%; Iхх=3%; S=47 кВА Находим Rт=0,88/40=0,022 Хт*=0,039 Pнг*=38/40=0,95; Qнг*=28/40=0,7; ΔUт*=0,022 · 0,95+0,39 · 0,7=0,0482 ΔUт=4,8%=18 В Р=0,17+0,88*0,3481=0,48 кВт*2=0,96 кВт Аналогично рассчитываем потери напряжения и мощности для остальных трансформаторов и заполняем таблицу 4. Таблица 4
Кол-во трансформаторовТип трансформатораU, кВт U, B U, %

2. 38+j28

3. 52+j36

4. 59+j33

5. 124+j103

6. 117+j87

7. 580+j337

8. 535+j475

2ТМ-40

0.88 0.17 4.5

3.0 0.59 0.96

3.7 9 2.4

1.28 0.24 4.5

2.8 0.51 1.15

5 7.5 1.9

1.28 0.24 4.5

2.8 0.54 1.22

5.18 7.5 19

2.65 0.52 4.5

2.4 0.5 2.36

11.28 7.5 1.9

1.97 0.33 4.5

2.6 0.73

2.76 10 11

2.8 7.6 1.42

5.5 2.0 7.6

1.42 5.5 2.0

0.54 0.57 7.24

7.78 45.4 47.72

7.2 9.5 2

2.5

2ТМ-63
2ТМ-63
2ТМ-160
2ТМ-100
2ТМ-630
2ТМ-630

9. 357+j226

10. 488+j231

11. 602+j377

12. 26+j18

2ТМ-400

5.5 5.5 7.6

0.6 0.6 0.92

2.92 1.42 0.13

0.13 4.5 4.5

5.5 4.5 4.5

2.3 2.3 2.0

3.2 3.2 0.54

0.69 0.57 1.28

1.12 5.05 7.08

7.78 1.11 0.88

28.9 35.54 74.72

2.64 2.21 7

8 8.5 20

18 1.84 2.1

2.2 5.23 4.64

2ТМ-400
2ТМ-630
1ТМ-25
13. 23+j161ТМ-25
ΔU для двух трансформаторных подстанций следует разделить на 2. Вывод: ΔР и ΔQ можно усреднить: ΔР=3,78 кВт ΔQ=20,4 квар И в дальнейшем не усложнять себе работу лишними расчетами. ΔU в двух трансформаторных подстанциях составляет в среднем 2,2%, а у одно-трансформаторных подстанций ΔU=4,9% 2,2%<4,9% То есть потери в одно-трансформаторных подстанциях почти в 2,2 раза больше чем у двух трансформаторных подстанций. Это происходит по тому, что двух трансформаторные подстанции работают в нагруженном режиме. 9. Определение присоединенной нагрузки с учетом потерь мощности в трансформаторах. Присоединенная нагрузка определяется с учетом количества электрических приемников питаемых от ТП, плюс потери в трансформаторе. Пример расчета для ТП2 (РСБН-У): мощность электроприемников: Sнгмах=47 кВА Потери: Р=38 кВт Q=28 квар ΔР=0,96 кВт ΔQ=3,7 квар Мощность нагрузки: ∑Р=Р+ΔР=38+0,96=38,96кВт ∑Q=Q+ΔQ=28+3,7=31,7квар Р+jQ=38.96+j31,7, так как на ТП2 2 трансформатора, то вся нагрузка приходится на 2 линии. Составим таблицу 5 с учетом потерь. Таблица 5
№ ТПКол-во тр-овПолная нагрузкаНагрузка на одну линию
2.238,96+j31,719,48+j15,85
3.253,15+j4126,58+j20,5
4.260,22+j38,1830,11+j19,09
5.2126,36+j114,2863,18+j57,14
6.2119,76+j9759,88+j48,5
7.2587,27+j382,4293,64+j191,2
8.2542,78+j522,72271,39+j261,36
9.2362,05+j254,9181,03+j127,45
10.2495,08+j266,54247,54+j133,27
11.2609,78+j424,72304,89+j212,36
12.127,11+j20,6427,11+j20,64
13.123,88+j18,2123,88+j18,21
10. Расчет потока мощности по участкам в рабочем режиме. Курсовая: Электроснабжение аэропортов Sл1=(1279+j824)кВА Sл8=248+j134 Sл2=1240+j792 Sл9=1768+j1390 Sл3=278+j153 Sл10=1642+j1276 Sл4=248+j134 Sл11=1522+j1179 Sл5=909+j598 Sл12=935+j797 Sл6=51+j39 Sл13=392+j274 Sл7=24+j18 Sл14=30+j19 1, 2...– номера точек при расчете токов короткого замыкания на ЭВМ. – коэффициенты схемы (КС). 11.Расчет сечений кабелей высоковольтной сети аэропорта в рабочем режиме. Сечение проводов высоковольтной линии электропередачи, рекомендуется выбирать по экономической плотности тока, т.е. такой плотности при которой расчетные затраты получаются минимальными. В ПУЭ для определения экономического сечения проводов линии рекомендуется пользоваться формулой: Fэк=Imax/ Jэк Imax – максимальная нагрузка при нормальной работе сети. Jэк – экономическая плотность тока А/мм², берется в зависимости от материала, конструкции кабеля и Тн (число часов использования максимально активной нагрузки). Пример расчета сечения кабеля на участке 1 (линия 1). Суммарная мощность:∑S=1279+j824=1521кВА, Код=0,8 Найдем рабочий ток: I1p=117 A Так как кабель алюминиевый с бумажной изоляцией (пропитанной) принимаем: Jэк=1,6А/мм² (Тм=3000 часов) Находим сечение: Fэк= Imax/ Jэк=117/1,6=73мм² Стандартное ближайшее значение Fст=70мм² с Iдд=190 А. Как видим, кабель проходит по току. Составляем таблицу 6 значений остальных сечений сети для рабочего режима: Таблица 6
№, лин

Мощность

на участке

Мощность на участке х Кодl, км

Ro, Ом/км

Хо, Ом/км

Код

Iраб, А

Fрасщ, мм²

Fст, мм²

Iдд, А

1.1279+j8241023+j6591,680,440,0860,81177370190
2.1240+j7921091+j6970,660,440,0860,811157870190
3.278+j153278+j1530,571,940,11331191680
4.248+j134248+j1340,541,940,11327171680
5.909+j598818+j5380,760,620,090,9945950155
6.51+j3951+j390,723,10,112641060
7.24+j1824+j1843,10,112321060
8.248+j134248+j1340,811,940,11327171680
9.1768+j13901503+j11821,210,260,0810,81175115120260
10.1642+j12761478+j11481,010,260,0810,92164113120260
11.1522+j11791370+j10610,750,330,0830,9515710495225
12.935+j797842+j7170,540,440,0860,91066670190
13.392+j274392+j2740,291,240,099462925105
14.30+j1930+j190,563,10,122321060
Проверим данную сеть на потери напряжения. В сети 6 кВ они должны быть ΔU=(6–8)%. Потери напряжения находим по формуле ΔU=(∑Рлі*Rлі *li+∑ Qлі*Xлі*li)/U Расчет ведется по наиболее удаленной точке сети и с учетом Код. Самой удаленной точкой линии является ТП13 DU=342 В Это составляет 5,7% и удовлетворяет условию ΔUдоп=6% 12. Расчет низковольтной сети. Этот расчет ведется по допустимой потере напряжения и по минимуму массы проводов. Требования ГОСТ 13109-76 можно удовлетворить, если потери напряжения в отдельных элементах сети не будет превышать некоторых допустимых значений. Петлевая сеть: (штаб, столовая). Курсовая: Электроснабжение аэропортов Л2 в рабочем режиме не участвует. Примем ΔUдоп=4,5%=17,1В. Потеря напряжения на индуктивном сопротивлении линии: ΔUх1=(Хо∑Q*l)/U=(0,06*9*0,3)/0,38=0,43 В ΔUх2=(0,06*16*0,1)/0,38=0,25 В ΔUх3=(0,06*16*0,32)/0,38=0,81 В Допустимые потери на активном сопротивлении линии: ΔUа доп1= ΔUдоп-ΔUх=17,1-0,43=16,67 В ΔUа доп2=17,1-0,25=16,85 В ΔUа доп3=17,1-0,81=16,29 В F1=(ρ*∑li*Pi)/(ΔUа доп.* ΔUн)=121 мм²; F2=47 мм²; F3=155 мм² F1ст=120 мм²; F2ст=50 мм²; F3ст=150 мм² Iдд=270 А > Ip=111 A Iдд=165 А Iдд=305 А > Ip=133 A Проверим по ΔU ΔU1=15 В Это составляет 4,1% < ΔUдоп =4.5% ΔU3=16 В Это составляет 4,2% < ΔUдоп =4.5% Проверим ПАР:
Л1
Л2

Курсовая: Электроснабжение аэропортов

I1пар=244 А < Iдд проходит I2пар=133 А < Iдд проходит Проверим потерю напряжения: ΔU=48,7 В Это составляет 10,9% > 4,5%+5%=9,5% Увеличиваем Л1: Fст=150мм² Iдд=305 А Увеличиваем Л2: Fст=120мм² Iдд=270 А ΔU=37 В Это составляет 8,9% < 9,5% Обрыв Л1 Расчет аналогичен предыдущему ΔU=35,5 В; Это составляет 9,3% < 9,5% – проходит ΔU=12,5 В; Это составляет 3,3% < 4,5% – проходит Низковольтная сеть. (3 мат. склада.)
Л1
Л2
Л3

Курсовая: Электроснабжение аэропортов

Iр1=76 А; Iр2=50 А; Iр3=26 А; ΔUх=0,86 В; ΔUа.доп.=17,1-0,68=16,42 В Курсовая: Электроснабжение аэропортов F1=36 мм²; Fст =35мм²; Iдд=135 А Курсовая: Электроснабжение аэропортов F2=18 мм²; Fст =16мм²; Iдд=90 А Курсовая: Электроснабжение аэропортов F3=9 мм²; Fст =10мм²; Iдд=65 А ΔU=45 В; 11,8% > 9.5% не подходит. Подбираем другие сечения F1, 2, 3=50 мм²; Iдд=165 А; ΔU=15,9 В; 4,2% < 4,5%; Рассмотрим ПАР: I1пар=151 А I2пар=101 А I3пар=50 А ΔU=32 В Это составляет 8,4% и удовлетворяет условие ΔUдоп=9,5%; Низковольтная сеть (ГРМ).

Курсовая: Электроснабжение аэропортов

30+j23
Ip=29 A; ΔUх=0,54 В; ΔUдоп=17,1- 0,54=16,56 В9 Курсовая: Электроснабжение аэропортов F=25 мм²; Fст =25мм²; Iдд=115 А; ΔU=15,2 В; 4% < 4,5%; В ПАР: Iпар=57 А; ΔU=30 В; 8% < 9,5%; 13. Расчет токов короткого замыкания. Расчет Iк.з на шинах силового трансформатора на низкой стороне. Используя таблицу, принимаем среднее геометрическое расстояние между проводом 0,4 мм, Х0=0,4 Ом/м для проводов марки АС линии эллектро передач. Относительное реактивное сопротивление: Xл1*=0,361 Хл2= 2,226; Относительное индуктивное сопротивление трансформаторов: Хтр*1=Uк1/100*Sб/ Sном=0,4*40*300/1,1*12100=5 Хтр*2=3,57 Точки короткого замыкания: Iк1*’’’=Е*/(Хс”+Xл1*+Хтр*1)=0,18 Iкз1*’’’=5,18 кА Iк2*’’’=0,16 Iкз2*’’’=4,6 кА 14. Проверка термической устойчивости кабеля от действия тока короткого замыкания. Для расчета берем кабель, у которого сечение имеет наибольшую разницу с предыдущим сечением. Для примера возьмем высоковольтный кабель с F=10мм², Iдд=60 А, Iр=6 А на линии 6, Ік’’’=0.95 кА Определим первоначальную температуру кабеля: Qнач=Δt(Iр/ Iдд)²+tокр. ср. Qнач=Qдд-Qном=60-15=45°С Qдд=60°С; Qном=15°С Q=15°С По графику находим при Q=15°С; Ан=1500(А²*с)/(мм²) Зная max допустимую температуру нагрева алюминия, находим Акз. При нагреве кабеля при токе короткого замыкания до температуры Qкз=200°С величина Акз.’=14000 (А²*с)/(мм²) Тогда ΔА=Акз.’-Ан=12500(А²*с)/(мм²) Зная это значение можно определить допустимое значение времени короткого замыкания, за которое кабель нагреется до Qдоп t=ΔА*F²/ Iкз²=1,4 с По результатам можно сделать вывод, что при установке защиты на этом участке, при коротком трехфазном замыкании защита должна сработать меньше чем за 1,4 с, иначе будет наблюдаться перегрев кабеля, что приведет к разрушению изоляции и пробою кабеля на этом участке. 15.Закон регулирования напряжения. Закон регулирования напряжения необходим для обеспечения качества электроэнергии (напряжения) в электросети. Для этого необходимо выбрать две точки сети: наиболее «близкую» и наиболее удаленную в электрическом отношении от источника питания. Если потери в линии до данного объекта превышают 2,5%, то их можно регулировать отпайками трансформатора. Нам задан диапазон регулирования на шинах питающей подстанции, в зависимости от колебания нагрузки. Потери в линиях рассчитываем по формуле ΔUl=(Pлi*Roi+Qлi*Xoi)*li/Uн ΔU1=137 В; 2,3%. ΔU2=52 В; 0,9%. ΔU3=18 В; 0,3%. ΔU4=45 В; 0,7%. ΔU5=78,2 В; 1,3%. ΔU6=19,54 В; 0,3%. ΔU7=51,1 В; 0,9%. ΔU8=67 В; 1,1%. Анализируя схему аэропорта, и просчитав потери в элементах сети принимаем, что в роли ближних точек будут: Б1 – РСБН-У (ТП2) Б2 – автобаза (ТП10), а в роли дальних: Д1 – ГРМ Д2 – столовая

Курсовая: Электроснабжение аэропортов

Схема для расчета закона регулирования Все потери в линиях обозначены на рисунке 9. Сечение линий приведены в таблице 6. Отклонения напряжения на линиях питающей подстанции при Imax+7%, при Imin+2%. Потери в высоковольтной линии: до ТП2: ΔUвв max=2,3%; до ТП3: ΔUвв max=3,2%; до ТП10: ΔUвв max=5,6%. Потери низковольтной линии: Д1: ΔUнв max=4%; Д2: ΔUнв max=4,2%. Так как соотношения токов при максимуме и минимуме нагрузки по заданию при Imax/ Imin=3, то чтобы найти потери при минимуме нагрузки, максимальные потери соответственно нужно уменьшить: до ТП2: ΔUвв min=0,77%; до ТП3: ΔUвв min=1,1%; до ТП10: ΔUвв min=1,9%. Д1: ΔUнв min=1,3%; Д2: ΔUнв min=1,4%. ΔUт – в таблице 4 (пункт 8) ΔUнв – при расчете низковольтной сети (пункт 13) Uвых= + 5%+ ΔUвв+ ΔUti+ ΔUнв Курсовая: Электроснабжение аэропортов Uвых max=5+2,3+4,8=12,1 1Б Uвых min=5+0,77+1,6=7,37 Курсовая: Электроснабжение аэропортов Uвых max=5+5,6+4,2=14,8 2Б Uвых min=5+1,9+1,4=8,3 Курсовая: Электроснабжение аэропортов Uвых max=-5+3,2+3,96+4=6,16 1Д Uвых min=-5+1,1+1,32+1,3=-1,28 Курсовая: Электроснабжение аэропортов Uвых max=-5+5.6+4,2+4,2=9 2Д Uвых min=-5+1,9+1,4+1,4=-0,3 Рассчитаем потерю напряжения в силовом трансформаторе ΔUт=Рк* Рнг/Sн²+ Uк* Qнг/(100*Sн) ΔUтo=0,015=1,5% Оценим необходимость использования трансформатора с РПН, возможно ли регулировать напряжение этим трансформатором в полученной зоне регулирования Ето=+5%+ΔUтo-ΔUвх+ΔUвв+ΔUтi+ ΔUнв ΔUвых=ΔUвх-ΔUто+Ето Ето – относительное изменение напряжения на вторичной обмотке трансформатора за счет уменьшения коэффициента трансформации отпайки. ΔUвх=7% при Sнгмах; ΔUвх=2% при Sнгмin Ето=ΔUтo-ΔUвх+ΔUвых Курсовая: Электроснабжение аэропортов Ето max=12,1-7+1,5=6,6 1Б Ето min=7,37-2+0,5=5,87 Курсовая: Электроснабжение аэропортов Ето max=14,8-7+1,5=9,3 2Б Ето min=8,3-2+0,5=6,8 Курсовая: Электроснабжение аэропортов Ето max=6,16-7+1,5=0,66 1Д Ето min=-1,28-2+0,5=-2,78 Курсовая: Электроснабжение аэропортов Ето max=9-7+1,5=3,5 2Д Ето min=-0,3-2+0,5=-1,8 Смысл графиков заключается в том, что если отключение напряжения на выходе питающего трансформатора будет, находится в пределах зоны, ограниченной прямыми, напряжение на нагрузке не выйдет за пределы допуска. В данном случае используется, как видно из графиков, трансформатор без РПН. Трансформатор с ПБВ следует установить на отпайку “0”. 16.Выбор косинусных конденсаторов. Определим полную мощность аэропорта при максимуме и минимуме нагрузки. Sнг.max=2249кВА Sнг.min=2249/3=750кВА Кабельные линии являются одновременно потребителями и генераторами реактивной мощности. Это необходимо учитывать при выборе конденсаторных батарей. Qпотр=3*I²*Xo*l; Qген=U²*bo*l Например, для кабеля на линии 9 (l=1,21 км; F=120 мм²; I=184 A) Qпотр=3*184²*0,076*1,21=9340 ВАР Qген=6000²*146*0,000001*1,21=6360 ВАР Результаты аналогичных вычислений для остальных кабелей заносим в таблицу 7.

Вывод: при максимальной нагрузке сеть работает как потребитель, а при минимальной как генератор (наоборот).

Таблица 7
№ лин.Длинна l, кмQпотр max, ВАРQпотр min, ВАРQген, ВАР
9.1,21934031136360
10.1,01746153092487
11.0,75489516323618
12.0,5414564852469
13.0,29160531015
14.0,561,250,422298
Находим прибавку реактивной мощности за счет кабельных линий ΔQmax=∑Qген-∑Qпотр max=18247-23313=-5,06 кВАР ΔQmin=∑Qген-∑Qпотр min=18247-10592=7,65 кВАР Определяем реальные реактивные мощности: Qнагр mах=1395,06; Qнагр min=465,02 квар Определяем полные мощности: Smax=2252 кВА Smin=751 кВА Находим реальные коэффициенты мощности: cosφmax=∑ Pнагр mах/Smax=0,79 cosφmin=∑ Pнагр min/Smin=0,78 Требуемый энергосистемой коэффициент мощности cosφсист=0,95 Мощность конденсаторных батарей мы определяем по формуле: Qkmax=∑ Pmах*(tgφд- tgφmp) φmp – требуемый угол, т.е. соответствующий 0,95 tgφmp=0.33 tgφд – действительный угол, т. е. соответствующий: max tgφд=0,78; min tgφд=0,8 Qkmax=796 квар; Qkmшт=277 квар Чтобы скомпенсировать эту мощность надо поставить батареи, где они будут наиболее эффективны. Это будут места где протекают большие реактивные мощности на высоковольтной стороне cosφ после установки КБ: cosφ=0.947
Место установкиМарка КБКол-воЕмкость
ТП16КС1-6-50-У3150
ТП7

КС1-6-50-У3

КС2-6-100-У3

1

3

50

300

ТП8

КС2-6-100-У3

КС2-6-75-У1

2

1

200

75

ТП9КС2-6-100-У31100
17. Эксплуатация кабельных линий. 1. После прокладки кабеля представители организаций электромонтажной, строительной и заказчика, осмотрев трассу, составляют акт на скрытые работы и дают разрешение на засыпку траншеи, засыпку производят после всех муфт и испытания кабеля повышенным напряжением. 2. Все кабельные изоляции по инструкции должны изготовляться из несгораемых материалов. 3. Вводы кабелей из траншей в здание при отсутствии вентилируемого подполья должны выполняться выше нулевой отметки. При открытой площадке кабели необходимо защищать от прямых солнечных лучей. 4. Кабели со сплошными порывами, задирами и трещинами шлангов необходимо отремонтировать или заменить. 5. Каждая кабельная линия должна иметь свой номер или наименование. В кабельных сооружениях бирки маркировки устанавливают не реже, чем через 5 лет. 6. После монтажа кабелей до 1 кВ проверяют целостность и фазировку кабеля, сопротивление изоляции и сопротивление заземления концевых зацепок. Сопротивление изоляции измеряется мегомметрами на напряжении 2,5 кВ, которое должно быть не менее 0,5 МОм, после одноминутного испытания и производится один раз в 5 лет, а кабель с резиновой изоляцией проверяется ежегодно. 7. Необходимо 2 раза в год контролировать нагрузку кабеля (1 раз обязательно в период ее максимальной нагрузки). 8. Осмотр кабельных трасс производится не реже одного раза в 3 месяца, концевых муфт и кабельных колодцев 2 раза в год. Внеочередные обходы производятся в период паводков и стихийных бедствий. 9. Необходимо следить за состоянием пикетов, предупреждать раскопки вблизи трасс, появление дорог, свалок мусора над трассами. 10. Один раз в 3 года кабели должны испытываться повышенным напряжением выпрямленного тока. Испытания проводят для каждой фазы отдельно, путем плавного подъема напряжения, начиная от 0,3, со скоростью, не превышающей 1% в секунду. При достижении требуемого значения напряжения стабилизируется в течение 10 минут и контролируется ток утечки, который должен постоянно уменьшаться или оставаться постоянным. В случае его нарастания испытания продолжаются до пробоя изоляции или стабилизации тока утечки. После плавного отключения кабель должен быть разряжен через небольшое сопротивление. 11. Земляные работы вблизи трасс должны выполняться в присутствии представителя эксплуатирующей организации. Не допускаются раскопки машинами вблизи одного метра, а ударных механизмов на расстоянии менее 5 метров от кабеля. 12. Открытые муфты и откопанные кабели должны подвешиваться к перекинутым через траншею брусам, причем муфты должны закрываться коробками. 13. Перед вскрытием кабеля необходимо удостоверится, что он отключен (прокол кабеля заземленной стальной иглой). 14. Перекладывать кабели и переносить муфты можно только после отключения кабельной линии. Работы производятся в диэлектрических перчатках, поверх которых надевают брезентовые рукавицы с группой по электробезопасности не ниже V, а для кабеля до 1 кВ не ниже IV. Список литературы:
АвторНазваниеИзд-воГод
1.Величко Ю. К.Системы электроснабжения АП и методические указания по к/п для студентов заочниковКиев. КИИГА1989
2.Величко Ю. К.Электроснабжение АП. Методические указания к к/п для студентов специальности 0621Киев. КИИГА1984
3.Величко Ю. К.Электроснабжение АП и руководство для к/п.Киев. КИИГА1978
4.

Величко Ю. К.

Козлов В. Д.

Электроснабжение АП и руководство к л/р.Киев. КИИГА1976

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.