бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

/p>

Кроме указанных экспериментов для последующей оценки линейности уравнения

регрессии был 4 раза определен выход на нулевом уровне. Значения уо

составили: 10,65; 10,82; 10,95 и 10,72, откуда среднее значение выхода уо =

10,78

Рассчитываем коэффициент регрессии:

Таблица 3.

1 Nb __

b = ∑ УN ХоNb

No

bo = 11.01

1 Nb __

b = ∑ УN ХiNb

No

b1 = 3.18

b2 = 2.02

b3 = - 0.18

1 Nb __

b = ∑ УN ХjNb

No

b12 = - 0.05

b13 = - 0.04

b23 = - 0.057

b123 = - 0.075

Уравнение регрессии тогда примет вид:

У = 11,01 + 3,18х1 + 2,02х2 – 0,18х3 – 0,05x12 – 0.04x13 – 0.057x23 – 0.075x123

(1.6)

Это уравнение может являться математической моделью процесса, однако, прежде

необходимо определить значимость входящих в него коэффициентов регрессии.

С этой целью необходимо найти выборочную дисперсию. Для этого вычисляются:

1) построчная дисперсия

∑(yN – yNk)2

S2(yNk) =

k – 1

S12(yNk) = 0.0043

S22(yNk) = 0.0072

S32(yNk) = 0.01

S42(yNk) = 0.0016

S52(yNk) = 0.0046

S62(yNk) = 0.0109

S72(yNk) = 0.0092

S82(yNk) = 0.0156

2) дисперсия воспроизводимости:

∑ S2 ( yNk)

S2(y) = = 0,0634 / 8 = 0,0079

Nb

(1.8)

3) дисперсия среднего значения:

∑ S2 ( yNk)

S2(y) = = 0.0079 / 3 = 0,0026

kn

(1.9)

4) дисперсия коэффициентов регрессии:

∑ S2 ( yNk)

S2(y) = = 0,0026 / 8 = 0,0003

Nb

(1.10)

по которой находится ошибка коэффициентов регрессии:

S (bi) = √S2 (bi) = 0.017

Для оценки значимости коэффициентов регрессии составим неравенство:

Bi > S (bi) tp (f)

(1.11)

где S (bi) – ошибка коэффициента регрессии, а

tp (f) – коэффициент Стьюдента, находимый по таблицам для требуемой

достоверности и числа степеней свободы f, с которыми были определены

коэффициенты регрессии. Для рассматриваемой задачи f = 8 * 2 = 16 и t95

(16) = 2,12. Тогда S(bi)t95(16) = 0.017*1.12 = 0.36, f = Nb * (kn –

1)

Отсюда :

b0 = 11,01 > 0,36 – значимый коэффициент регрессии

b1 = 3,18 > 0,36 – значимый коэффициент регрессии

b2 = 2,02 > 0,36 – значимый коэффициент регрессии

b3 = 0,18 < 0,36 – незначимый коэффициент регрессии.

Рассматриваемый коэффициент регрессии b3 может быть незначимым по

многим причинам, в частности:

- выбрана слишком маленькая единица варьирования для данного фактора, а

ошибка метода велика;

- нулевой уровень по данному фактору лежит уже в оптимуме и, следовательно,

изменение данного фактора на величину может не вызывать изменения выхода;

- и, наконец, данный фактора действительно не оказывает никакого влияния на

процесс, так как не имеет к нему отношения.

В рассматриваемом случае нулевой уровень по третьему фактору лежит в

оптимуме, а потому он и не вызывает изменения выхода.

Кроме этого, знак минус при третьем факторе свидетельствует о том, что с

увеличением показателя преломления уменьшается выход. Это происходит по всей

видимости потому, что поглощающая способность капли увеличивается до

определенной величины, затем отражающая способность его становится

доминирующей, то есть капля выполняет роль своеобразного зеркала на пути

светового потока лазера.

Коэффициенты Х1; Х2; Х23; Х123 незначимы для Р = 95%, а потому уравнение

регрессии (1.5) после отбрасывания незначимых членов будет иметь вид:

ŷ = 11,01 + 3,15х1 + 2,02х2 – 0,18х3

(1.12)

проанализируем уравнение регрессии (1.12) с точки зрения проверки

правильности выбранной гипотезы, что система линейна, иными словами

необходимо установить, может ли выход процесса быть описан уравнением без

членов высших порядков и, возможно, без членов, учитывающих парные

взаимодействия.

Оценим значимость коэффициентов регрессии при членах высших порядков.

Для этого был проведен эксперимент в нулевой точке с числом повторностей Z = 4.

__

Вычисленное среднее значение Уо является чистой оценкой для УоZ,

ii ii

а разность (Уо – bo) = [β – (βo + ∑ βii)] = ∑

βii оценкой для суммы коэффициентов регрессии при членах высших

порядков. Если она незначима, то принятое предположение о возможности описания

процесса уравнением без квадратичных и более членов правильно.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения Для оценки значимости, зная bo и

S2 (bo) = S2 (bi), можно воспользоваться формулой (1.13):

_ S2 √ (Nb + Z)

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения [Уо - bo] >

Nb * Z * tp (f)

(1.13)

где _ (Nb – 1) S2(bi) + (Z – 1) S2 (Уо)

S2 =

Nb + Z – 2

среднее взвешенное из двух дисперсий. Здесь в добавление к ранее принятым

обозначениям tp (f) –значение коэффициента Стьюдента, находимое по таблице,

для выбранного уровня доверительной вероятности и числа степеней свободы.

Для рассматриваемой задачи:

(Уо – bо) = │10,78 – 11,01│= 0,23

Расчет S2 (Уо) ведется по формуле:

_

S2 (Уо) = ∑│Уо - УоZ│/ Z (Z – 1) = 0,425

(1.14)

где Z – число повторностей в определении У.

Тогда S2 = 0,23 < 0,46

Различие между Уо и bо статически незначимо, следовательно, гипотеза о

возможности использования уравнения без квадратичных членов верна.

Теперь для упрощения математической модели, проверим возможность описания

процесса линейным уравнением, то есть уравнением без парных членов. Для этого

оставим дополнительную матрицу планирования по следующей схеме (Табл. 4).

Из этой матрицы вычислим дисперсию неадекватности данной модели (без парных

взаимодействий):

∑(УN –УN)2

S2ag = —————— = 21,61 / 7 = 3,08

N + l – i – 1

Здесь N + l – i – 1 – число отброшенных членов, где:

l – число исключенных парных взаимодействий. Теперь сравним S2

ag с дисперсией воспроизводимости, рассчитанной выше, по критерию Фишера

(F):

Fрасч = S2ag / S (У)2 = 18,117

№ вари

анта

Х1Х2Х3

УN

УN =bo+b1+и2Х2+и3Х3

УN -ŷN

(УN -ŷN)2

1

---

7.3

У1 = 5.99

1.39

1.39

2

+-+

13.83

У2 = 11.59

2.24

5.01

3

--+

7.04

У3 = 5.63

1.41

1.98

4

+--

14.01

У4 = 12.35

1.66

2.75

5

-++

8.08

У5 = 9.67

1.59

2.52

6

+++

15.08

У6 = 16.39

1.31

1.71

7

-+-

8.33

У7 = 10.03

1.7

2.89

8

+++

14.35

У8 = 16.03

1.68

2.82

Коэффициент

регрессии

bo = 11.01

_

∑(УN – ŷN)2 = 21.61

b1 = 3.18
b2 = 2.02
b3 = - 0.18

Критерий Фишера, найденный по таблице 4 F (f1;f2) для

степеней свободы f1 = N + l – i – 1 = 7 и f2

= Кп – 1 = 3 – 1 = 2 - числа степеней свободы, для которого определялась

дисперсия воспроизводимости, равняется для вероятности 95%

F95 (7;2) = 19,35, а для вероятности 99%

F95 (7;2) = 99,36. Таким образом,

Fрасч ≤ F (f1;f2) и, следовательно, можно отбросить

парные взаимодействия и пользоваться линейной моделью.

Итак, теперь с достаточной точностью можно утверждать, что процесс

описывается следующей математической моделью:

Ŷ = bo + b1x1 + b2x2 b3x3 = 11,01 + 3,18х1 +2,02х2 – 0,18х3

1.3. Определение оптимальных условий

светогидравлической промывки.

Как известно, для поиска оптимума, наиболее простым с точки зрения

выполнения, является экспрессный метод, называемый «методом крутого

восхождения».

Суть метода состоит в том, что если поставить серию опытов. В которых в

каждом последующем варианте изменять величину действующих факторов

пропорционально произведению коэффициента регрессии данного фактора на

величин единицы варьирования, то такое движение по поверхности отклика будет

кратчайшим путем к достижению оптимума. В рассматриваемом случае:

X1.0X1 = 200

X2 .0X2 = 4

X3 . 0X3 = 5

λ11=100

λ21=2

λ31=3

b1=3,18

b2=2,02

b3=-0,18

b1λ11 = 318

b2λ21 = 4,04

b3λ31 = -0,54

В качестве «шага» выбираем величину 0,05 b1λ1. Тогда

план «крутого» восхождения будет выглядеть так, как представлено в таблице 5.

Таблица 5.

Вари-

ант

Условия в кодированном виде

Х

Х

Х

0Х1

0Х2

0Х3

0+0,05b1λ1

0+0,05b2λ2

0+0,05b3λ3

0+0,1b1λ1

0+0,1b2λ2

0+0,1b3λ3

0+0,15b1λ1

0+0,15b2λ2

0+0,15b3λ3

0+0,2b1λ1

0+0,2b2λ2

0+0,2b3λ3

0+0,25b1λ1

0+0,25b2λ2

0+0,25b3λ3

Вари-

ант

Условия в реальном виде

Х

Х

Х

200

4

5

215

4,2

4,975

230

4,4

4,95

245

4,6

4,925

260

4,8

4,9

275

5,0

4,875

Выход10,7813,2214,6215,0616,4617,86

Реализованный опыт показал, что принятое решение о проведении крутого

восхождения верно. Выход процесса при Х1 = 275, Х2 = 5,0

и Х3 = 4,875 более чем в полтора раза выше, чем на исходном нулевом

уровне. Можно сделать предположение о том, что оптимум находится именно при

таком сочетании значений рассматриваемых факторов.

Чтобы убедиться в правильности принятого решения о нахождении оптимума был

поставлен дополнительный эксперимент с центром в точках ОХ1 = 275;

ОХ2 = 5,0; ОХ3= 4,875.

Шаг варьирования выбираем мельче, чем при ранее проводившихся опытах. Пусть:

λ11= 5; λ2

1= 0,05; λ31=

0,05.

Таблица 6.

ТогдаОХ+ I- I
W (X)2755280270
2r (X)5,00,055,054,95
Пк (X)4,8750,054,9254,825

Таблица 7.

Вариант

Х0

Х1

Х2

Х3

УN1

УN2

УN3

УN

1+---17,8517,8517,8517,850
2++-+17,8517,8617,8517,853
3+--+17,8517,8517,8617,853
4++--17,8617,8517,8617,856
5+-++17,8517,8617,8517,853
6+++-17,8617,8617,8617,860
7+-+-17,8517,8617,8517,853
8++++17,8517,8617,8517,853

Коэффи-

циент

регрессии

17,8530,0160,0160,016

Определяем построчную дисперсию

S12(yNk) = 0

S22(yNk) = 0,002454

S32(yNk) = 0.002454

S42(yNk) = 0.0034

S52(yNk) = 0.002454

S62(yNk) = 0

S72(yNk) = 0

S82(yNk) = 0.002454

Рассчитываем дисперсию воспроизводимости:

S2IУI = 0,00165

Дисперсия среднего значения:

_

S2IУI = 0,00055

Дисперсия коэффициентов регрессии:

S2(bi) = 0,00007

по которой находится ошибка коэффициентов регрессии:

S2IbiI = √0,00835 = 0,00835

Критерий значимости:

S2IbiI t (f ‘) = 0,00835 2,12 = 0,0177

Все коэффициенты светогидравлической промывки получились незначительными,

следовательно в рассматриваемом случае оптимальными условиями можно считать

следующие:

- величина энергии светового импульса лазера должна лежать в

пределах 50 милли Ватт в каждом импульсе;

- диаметр капли промывочной жидкости должна составлять 0,5 мкм;

- показатель преломления промывочной жидкости составляет 2%.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Рис 1. Поверхность отклика.

На рисунке 1 приведена поверхность отклика, полученная в результате

графического представления описанного опыта. Анализ этой поверхности

показывает, что полученные условия являются оптимальными лишь для выбранного

типа лазерного оборудования, параметров жидкой рабочей среды и катализатора.

Очевидно, что дальнейшее увеличение энергии лазера (невозможно для данного

типа лазера) может дать приращение значений выходного параметра, так же как

увеличение диаметра капли (невозможное вследствие отрыва капли диаметром

более 6 мм от патрубка).

2. Разработка структурной схемы установки для светогидравлической промывки

и оценка его возможностей применения в промышленности.

Разнообразие решаемых конкретных технологических задач определяет и различные

требования к параметрам светогидравлических установок, что в свою очередь,

приводит к большому количеству их схем построения. В данном разделе

рассмотрим основные элементы и методы построения технологических лазерных

установок, использующих энергию светогидравлического эффекта.

2.1. Разработка структурной схемы установки для светогидравлической промывки.

Анализ схем возможных вариантов светогидравлической обработки позволил

разработать общую структуру технологических установок, использующих этот

принцип (рис. 2.1).

Источником энергии в установке является лазер [2], излучение которого через

оптическую систему направляется в камеру светогидравлического устройства.

Взаимодействие всех элементов, образующих схему установки, регулирует блок

управления (Б.У.) [3].

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Рис 2.1. Общая структурная схема установок для светогидравлической промывки.

1 – рабочая камера;

2 – лазер с оптической системой;

3 – блок управления (Б.У.);

4 – блок герметизации рабочей камеры;

5 – блок вакуумирования рабочей камеры;

6 – блок регистрации уровня жидкости в рабочей камере;

7 – блок подачи жидкой среды в рабочую камеру;

8 – блок слива отработанной жидкой среды;

9 блок тарированной подачи капель промывочной жидкости в рабочую камеру;

10 – блок измерения спектрографических характеристик промывочной жидкости.

11 – датчик устройства встроенного контроля качества выполнения операции.

Герметизация камеры осуществляется за счет механизма прижима [4], в котором

одновременно предусмотрен датчик для измерения силы прижима. По достижении

заданного значения усилия прижима подается сигнал на Б.У., который отключает

механизм 4 и подает сигнал на включение блока 5, представляющего собой

устройство вакуумирования рабочей камеры.

Величина достаточного вакуума регистрируется и по достижении заданного его

значения подается сигнал на Б.У. об отключении блока 5 и последующих блоков.

В подготовленную таким образом камеру подается жидкая рабочая среда за счет

устройства 7, часть жидкости при этом перетекает в специальную емкость

водного затвора, в которой уровень ее регистрируется блоком , который после

достижения заданного уровня подает на Б.У. сигнал о прекращении подачи жидкой

среды и включении в работу блока 9.

В жидкую рабочую среду вводятся капли за счет блока тарированной подачи 9 и

одновременно ведется измерение его количества. По достижении заданного

параметра на Б.У. подается сигнал, прекращающий подачу капель. Одновременно с

введением капель Б.У. подает команду на зарядку блока конденсаторов лазера 2.

Блок управления подает команду на включение в работу лазера. За счет

светогидравлического эффекта в камере создается облако капель промывочной

жидкости, характеристики которых регистрируются блоком 10.

Качество выполнения операции может регистрироваться с помощью датчиков

встроенного контроля (блок 11), которые подаются блоком 10.

Качество выполнения операции может регистрироваться с помощью датчиков

встроенного контроля (блок 11), которые подают сигналы на Б.У. В случае

невыполнения заданных требований Б.У. выдает команду на повторение операции,

а при достижении требуемого качества – на блок 8, который сливает

обработанную жидкую среду и катализатор, и приводит все элементы установки в

исходное состояние.

Выбор конкретной конструкции и параметров всех перечисленных элементов

установки зависят, как уже указывалось, от вида решаемой технологической

задачи.

Рис.2.2. Алгоритм работы лабораторного образца установки для светогидравлической

промывки.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Лист 01.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Лист 02.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Лист 03.

Блок-схема: ссылка на другую страницу: 03
14

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Лист 04.

Рис.2.2. Алгоритм работы лабораторного образца установки для

светогидравлической промывки.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Рис. 2.3. зависимость диаметра монодисперсных парожидкостных микропузырей

очищающей жидкости от мощности светового потока лазера.

3. Расчет оптического тракта установки для промывки.

В оптический тракт установки входят элементы, каждый из которых обладает

определенной поглощающей и отражающей способностью.

Основным элементом, поглощающим световую энергию лазера, является

парожидкостной пузырек.

Когда парожидкостный пузырек взрывоподобно вскипает, поглощая основную долю

световой энергии, причем при схлопывании пузырька имеют место кавитационные

явления.

Курсовая: Разработка оборудования для ультрачистой промывки двигателей аэрокосмического приборостроения

Рис. 2.4. Оптический тракт установки для промывания.

Под действием кавитационных явлений с одной стороны происходит очищение

заготовки, а с другой стороны вместо большого парожидкостного пузырька

диаметром порядка 0,2 мм образуются мелкие пузырьки диаметром от 2 до 0,2

мкм, соизмеримые по своим геометрическим параметрам с геометрическими

параметрами микротрещин на поверхности заготовки.

Таблица 8.

Отражательная и поглотительная способность элементов оптического тракта.

п/п

Элемент оптического

тракта

Отражающая

способность

Поглощающая

способность.

1Лазер с выходной мощностью ( )--
2Воздушная среда

0,001 от WΣ

0,001 от WΣ

3Защитное окно

0,001 от WΣ

0,001 от WΣ

4Очищающая жидкость

0,001 от WΣ

0,001 от WΣ

5Парожидкостный пузырек

0,01 от WΣ

0,99 от WΣ

Список используемой литературы.

1. Адлер Ю.П., Макарова Е.В., Грановский Ю.В. «Планирование эксперемента

при поиске оптимальных условий». М.:Наука, 1981. – 281 с, ил.

2. Андреева Л.Е. «Упругие элементы приборов». М.: Машгиз, 1982. – 455

с., ил.

3. Аренков А.Б. «основы электрофизических методов обработки

материалов».:Машиностроение,, Ленинградское отд-ние, 1967. – 372 с., ил.

4. Анучин М.А. и др. «Штамповка взрывом. Основы теории». М.:

Машиностроение, 1972. – 150 с., ил.

5. Апанасевич П.П. «Основы теории взаимодействия света с веществом».

Минск.: Наука и техника, 1977. – 495 с., ил.

6. Аскарьян Г.А., Прохоров А.М., Чантурия Г.Ф., Шипуло Г.П. «Луч ОКГ в

жидкости». в журнале: журнал экспериментальной и технической физики, т. 44,

в. 6, 1963, с 2180 – 2182.

7. Ахиманов С.А., Хохлов Р.В. «Проблемы нелинейной оптики». М.: Наука,

1964. – 155 с., ил.

8. Басов Н.Г., Кологривов А.А., Крохин О.Н. др. «Наблюдение сжатия полых

микросфер, облучаемых лазером». – в журнале: Письма в ЖЭТФ, т. 23, в. 8,

1976, с. 752 – 753.

9. Баринов В.В., Сорокин С.А. «Взрывы водных капель под действием

оптического излучения». - в журнале: Квантовая электроника. 2 (14), 1973, с.

5 – 11.

10. Батуев Г.С., Голубков Ю.В., Ефремов А.К., «Инженерные методы

исследования ударных процессов». М.: Машиностроение, 1977. – 239 с., ил.

11. Бломберген Н. «Нелинейная оптика». Пер. с англ. М.: Мир, 1966. – 865 с.,

ил.

12. Бойер К. «О возможности использования в РД термоядерной реакции,

инициируемой лазером». В журнале: Вопросы ракетной техники, №7, 974, с. 74 –

82.

13. Борадочев И.А. «основные вопросы теории точности производства». М.: Изд.

Академии наук СССР, 1950. – 388 с., ил.

14. Базуков А.А., Попов Ю.А., Тесленко В.С. «Экспериментальное излучение

взрывного процесса, вызванного фокусировкой моноимпульсного излучения лазера

в воду». В журнале: ПМТФ, №5, 17, 1969, с. 17 – 24.

15. Букздорф Н.В., Погодаев В.А., Чистяков Л.К. «О связи неоднородностей

внутреннего оптического поля облученной капли с ее взрывом». В журнале:

Квантовая электроника, т. 2, №5, 1975, с. 1062 – 1064.

16. Бункин В.Ф., Конов В.И. и др. «Светоакустическая кавитация в воде». В

журнале: ЖЭТФ, №67, в. 6 (12), 1974, с. 2087 – 2091.

17. Вукс М.Ф. «Рассеяние света в газах, жидкостях и растворах. Л.: изд.

Ленинград. ун-та, 1977. – 320 с., ил.

18. Гаврилов А.Н. «Технология авиационного приборостроения». М.: Оборонгиз,

1962. – 365., ил.

19. Замышляев Б.В., Яковев Ю.С. «Динамические нагрузки при подводном взрыве.

Л.: Судостроение, 1967. – 158 с., ил.

20. Зельдович Я.Б. «Теория ударных волн.» М.: Изд. АН СССР, 1946. – 482 с., ил.

21. Иоффе А.И., Мельников Н.А., Наугольных К.А., Упадышев В.А. «Ударная

волна при оптическом пробое в воде». В журнале: ПМФТ, №3, 225, 1970. с. 18 –

22.

22. Картавов С.А., Коваленко В.С. «Применение ОКГ для технологических

целей». Киев: Техника, 190 – 275 с., ил.

23. Кей Дж., Леби Т. «Таблицы физических и химических постоянных». Изд.

Второе переработанное. Перевод с англ. М.: Гос. изд физико-матем. Литературы,

1962. – 247 с.

24. Конингстайн И.А. «Введение в теорию комбинационного рассеяния света».

М.: Мир, 1975. – 375 с., ил.

25. Кошелев К.Н., Чекалин С.В., Чурилов С.С. «Об оптической фокусировке

лазерного излучения на поверхности твердой мишени». В журнале: Квантовая

электроника, т. 2 №7, 1975, с. 1593 – 1596.

26. Кракстон к. «Физика жидкого состояния. Статическое введение». Перевод с

англ. М.: Мир, 1978. – 565 с., ил.

27. Кузиковский А.В. «Динамика сферической частицы в мощном оптическом

поле». В журнале: Известия ВУЗов Физика. №5, 1970, с. 89 – 94.

28. Ландау Л.Д. «Об ударных волнах на далеких расстояниях от места их

возникновения». – В журнале: ПММ, т. IX, вып. 4, 1945, с. 18 – 22.

29. Ландау Л.Д., Лившиц Е.М. «Механика сплошных сред». – М: Готехиздат, 1954

– с., ил.

30. Леонов Р.К., Таурин Н.Ф. и др. «О роли кавитации в световом разрушении

поверхности стекла, контактирующего с жидкостью». В журнале: Физика и химия

обработки материалов, №6, 1974. с. 22 – 23.

31. Лихачев А.П. «Лазерный способ исследования веществ при сверхвысоких

температурах и давлениях». В журнале: Геохимия, №10, 1978, с. 25 – 28.

32. Лосев С.А. «Газодинамические лазеры». М.: Наука, Глав. ред.физ. мат.

лит., 1977. – 255 с., ил.

33. Миркин Л.И. «Физические основы обработки материалов лучами лазера». М.:

Изд. Московского университета, 1975, 162 с., ил.

34. Най Дж. «Физические свойства кристаллов». М.: Мир, 1967, 375 с., ил.

35. Наугольных К.А., Рой Н.А. «Электрические разряды в воде». М.: Наука,

1971, 153 с., ил.

36. «Оборудование и технологические продессы с использованием

электрогидравлического эффекта». Под ред. к.т.н. Г.А. Гулого. М.:

Машиностроение. 1977, 320 с., ил.

37. Огибалов П.М., Кийко И.А. «Очерки по механике высоких параметров. Сб.

науч. тр. Московского университета». М.: МГУ, 1966, 151 с.

38. Перник А.Д. «Проблемы кавитации». М.: Судпромгиз, 1963, 382 с., ил.

39. Пиховиков Р.В., Завьялова В.И. «Штамповка листового металла взрывом» м.:

Машиностроение, 1984, 152 с., ил.

40. Пустовалов В.К., Романов Г.С. «Испарение капли в диффузном режиме под

действием монохроматического излучения». В журнале: Квантовая электроника, 4,

№1, 1977, с. 84 – 94.

41. Рейнхарт Дж.С., Пирсон Дж. «Взрывная обработка металлов». М.: Мир, 1966,

220 с., ил.

42. Ринкевичус Б.С. «Лазерная анемометрия». М.: Энергия, 1978, 159 с., ил.

43. Рыкалин Н.Н., Углов А.А. «Процессы объемного парообразования». В

журнале: ТВТ, т. 9, №3, 1971, с. 575 – 582.

44. Степанов В.Г., Шавров И.А. «Высокоэнергитические импульсные методы

обработки материалов». Л.: Машиностроение, 1975, 277 с., ил.

45. Суминов В.М., Чуреев Е.Г. «Оценка технологических возможностей энергии

светогидравлического эффекта для обработки деталей. Труды научно-технической

конференции по технологии и конструированию микроэлектронных устройств». М.:

Электроника, 1980, 451 с., ил.

46. А.С. 220207 «Устройство для штамповки листовых заготовок». (Суминов

В.М., Чуреев Е.Г.) – Публикация запрещена.

47. А.С. 278617 «Устройство для штамповки листовых заготовок». (Суминов

В.М., Чуреев Е.Г.) – Публикация запрещена.

48. А.С. 577733 «Устройство для штамповки оптическим квантовым генератором».

(Суминов В.М., Чуреев Е.Г.) опубл. в Б.И., 1978, №9.

49. А.С. 597143 «Устройство для гидролазерной штамповки». (Суминов В.М.,

Чуреев Е.Г.) опубл. в Б.И., 1978, №9.

50. А.С. 674300 «Устройство для штамповки оптическим квантовым генератором».

(Суминов В.М., Чуреев Е.Г.) – Публикация запрещена.

51. Суминов В.М. «Гидролазерная штамповка». В журнале: Авиационная

промышленность, №10, 1970, с. 47 – 50.

52. Суминов В.М., Промыслов Е.В., Скворчевский А.К. «Обработка деталей лучом

лазера». М.: Машиностроение, 1976, 196 с., ил.

53. Суминов В.М., Скворчевский А.К. «Уравновешивание вращающихся тел лучом

лазера». М.: Машиностроение, 1974, 175 с., ил.

54. Суминов В.М., Чуреев Е.Г. и др. «Технологическое лазерное оборудование в

машиностроении и приборостроении. Каталог ВДНХ». М.: Машиностроение, 1974, 24

с., ил.

55. Суминов В.М., Чуреев Е.Г. «Исследование светогидравлического эффекта и

оценка его технологических возможностей. Тезисы докладов II Всесоюзной

конференции. «Применение лазеров в приборостроении, машиностроении и

медицинской технике»».М.: МВТУ, 1979, 34 с.

56. А.С. 752901 «Способ создания импульсного давления». (Суминов В.М.,

Чуреев Е.Г.) – Публикация запрещена.

57. А.С. 849613 «Устройство для электрогидравлической обработки» (Суминов

В.М., Чуреев Е.Г.) – Публикация запрещена.

58. Тесленко В.С. «Исследование светоакустических и светогидродинамических

параметров лазерного пробоя в жидкостях». В журнале: Квантовая электроника.

Т. 4, №8, 1977., с 1732 – 1737.

59. Чуреев Е.Г. «Взаимодействие лазерного излучения с различными материалами

в жидкости». РФ. Физика, 1977, №7, Реферат 7Д 1240. Дер. В ЦНИИТЭИ

приборостроения 26 авг. 1976 г., №604.

60. Чуреев Е.Г. «Взаимодействие светового излучения с легко испаряющимися

жидкостями и металлами в воде». В журнале: Известия ВУЗов по разделу

«Приборостроение», т.ХХП, №12, 1979, с. 71 – 75.

61. Юткин Л.А. «Электрогидравлический эффект». М.: Машгиз, 1955, 35 с., ил.

62. Чуреев Е.Г. «Светогидравлический эффект и его применение в космической

технологии. Тезисы доклада на 1-ом Международном аэрокосмическом когрессе».

Москва, 1994 г.

63. Чуреев Е.Г. «Светогидравлический эффект и его место в механике жидких

сред. Тезисы доклада на 7-ом Международном симпозиуме «Применение лазеров в

механике жидких сред.»» Лиссабон, Португалия, Институт высоких технологий,

1996 г.

64. Чуреев Е.Г. «Технологическое применение светогидравлического эффекта».

Лиссабон, Португалия, Институт высоких технологий, 2001 г.

65. Чуреев Е.Г., Чувпило Г.А. «Механика жидких сред как научная основа

технологического применения светогидравлического эффекта». Лиссабон,

Португалия, Институт высоких технологий, 2003 г.

66. Чуреев Е.Г. Чувпило Г.А. «Разработка оборудования для стерилизации

медицинских инструментов» Отчет по гранту №2483, С.Петербург, центр грантов,

1996 г.

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.