бесплатно рефераты
 
Главная | Карта сайта
бесплатно рефераты
РАЗДЕЛЫ

бесплатно рефераты
ПАРТНЕРЫ

бесплатно рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

бесплатно рефераты
ПОИСК
Введите фамилию автора:


Реферат: Марс

наблюдение производить в обсерваториях, расположенных на разной

географической долготе. Так, например, если в Ташкенте полдень, а в

обсерватории Маунт Вилсон (США) царит глубокая ночь, то наблюдая с этих

обсерваторий Марс, можно за сутки осмотреть всю его поверхность. Смена дня и

ночи сопровождается явлениями, аналогичными земным. В средних широтах Солнце

восходит и заходит, двигаясь под углом к горизонту. Поэтому переход от одного

времени суток к другому сопровождается сумерками, когда поверхность

освещается косыми лучами низкостоящего Солнца. В тропиках и на экваторе

Солнце поднимается и опускается почти отвесно. Здесь так же, как и на

одноименных широтах Земли, день и ночь сменяют друг друга резким переходом от

света к темноте.

Времена года на Марсе.

Из школьного курса географии и астрономии мы знаем, что смена времен года на

Земле происходит не потому, что Земля подходит ближе к Солнцу или удаляется

от него, а от того, что земной экватор наклонен к плоскости земной орбиты под

углом 23,5 градуса. Из этого следует, что земная ось располагается не

перпендикулярно, а наклонно.

При движении Земли вокруг Солнца направление земной оси не изменяется. Она

все время направлена своим северным концом на Полярную звезду. Поэтому,

двигаясь вокруг Солнца, Земля поворачивает к наблюдателю как северное, так и

южное свое полушарие.

Аналогичная картина происходит и на Марсе (см. рис. 2). В разных полушариях

его одновременно бывают противоположные времена года. Когда в северном

полушарии лето, в южном – зима. Если в северном полушарии осень, то в южном –

весна. И это потому, что наклон экватора Марса к плоскости его орбиты

примерно такой же, как и у Земли, он равен 24°46’. Это и вызывает сезонные

изменения на Марсе.

Известно, что от высоты Солнца над горизонтом зависит количество тепла,

падающего на данную поверхность. И чем выше поднимается Солнце над

горизонтом, тем сильнее оно греет. Разной высотой Солнца над различными

местами земного шара объясняется то, что на Земле имеются различные тепловые

климатические пояса: жаркий (тропический), два умеренных и два холодных.

Кроме того, в каждом году бывают холодные и теплые сезоны. То же самое имеет

место и на Марсе. Так же, как и на Земле, происходит четкая смена времен

марсианского года и сезонов. За холодной, суровой зимой следует прохладная

весна, потом более теплое лето, которое сменяется прохладной осенью. После

нее опять наступает холодная зима с ее короткими днями и длинными ночами.

Результаты такой смены сезонов хорошо видны в телескоп по таянию полярных

шапок. Однако существенная разница тут в том, что орбита Марса лежит от

Солнца дальше, чем земная, а скорость движения его по орбите меньше, чем

нашей планеты. Поэтому годовой путь у Марса длиннее. Это ведет к тому, что

продолжительность оборота Марса вокруг Солнца почти вдвое больше, чем Земли:

она составляет 687 земных суток. Своих же «марсианских» суток, которые

намного длиннее земных, год Марса содержит 669. Таким образом, марсианский

год почти в два раза (а точнее в 1,88) продолжительнее земного.

В летний для северного полушария Земли период (в июле) наша планета более

всего удалена от Солнца (152 млн. км.), а в зимний (январь) – менее (147 млн.

км.). Разница в 5 млн. км. – незначительная, а поэтому лето в северном и

южном полушариях почти одинаково теплое. То же самое можно сказать и о зимних

периодах. Но поскольку эксцетриситет Марса больше, то удаление его от Солнца

в перигелии составляет 206,7 млн. км., а в афелии – 249, 1 млн. км. В

следствие этого Марс в афелии получает солнечной энергии в полтора раза

меньше, чем в перигелии. А поэтому климат в северном и южном полушариях

весьма различен. Он резко континентальный. Даже на экваторе после жаркого

дня, ночью, могут быть заморозки. Перигелийную половину орбиты Марс проходит

быстрее афелийной. Поэтому лето в южном полушарии, приходящееся на

перигелийный период, более короткое, чем в северном полушарии, и более

теплое, а зима и суровее. Из-за значительного эксцентриситета орбиты Марса

длительность сезонов в разных полушариях значительно различается (табл. 1).

Таблица 1

ПолушариеПродолжительность сезона
северноеюжноеземных сетокмарс. суток

Весна

Лето

Осень

Зима

Осень

Зима

Весна

Лето

199

182 381

146

160 306

194

177 371

142

156 298

687669

В зависимости от сезона меняется и продолжительность дня и ночи. В полярных

широтах длинный день, продолжающийся почти целый земной год, сменяется столь

же долгой ночью. В средних широтах короткие зимние дни увеличиваются с

приближением весны и лета и вновь уменьшаются после летнего солнцестояния.

Времена года на Марсе хорошо прослеживаются по его полярным шапкам.

Полярные шапки.

Северный и южный полюсы Марса прикрывают яркие светлые образования, которые

по аналогии с земными названы «полярными шапками».

Белый покров в северном полушарии к концу зимы распространяется до широт 50 –

60° и его диаметр достигает от 4000 – 6000 км., а летом сокращается со

скоростью 10 – 12 (иногда до 100) км. за сутки до диаметра 700 – 1500 км.

Южная шапка тает больше, и в некоторые годы исчезает полностью, что

объясняется эксцентричностью орбиты Марса. Вокруг тающей шапки образуется

темная кайма, прилегающие к ней детали приобретают ясные очертания, и эта

волна улучшения видимости движется к экватору со средней скоростью до 35 км.

в сутки, а концу лета заходит даже за экватор до 25° широты другого

полушария. Все это очень похоже на то, что происходит на Земле. Наблюдая,

например, длительное время Землю с Луны, можно увидеть аналогичную картину. И

вполне естественно возникла гипотеза, что полярные шапки Марса состоят из

снега или льда. Однако это предположение не единственно возможное. О природе

полярных шапок было высказано несколько гипотез.

Некоторые ученые считали, что это облачный покров или туманы. Другие

доказывали, что это соляной покров, и в качестве примера указывали на соль,

которая на поверхности земных солончаков образует обширные светлые покровы.

Большинство же ученых связывало эти шапки со слоем твердой углекислоты –

вещества, всем известного под названием «сухой лед». Эта гипотеза получила

сравнительно широкое распространение, поскольку она соответствовала данным

спектральных исследований, с помощью которых было установлено наличие в

атмосфере Марса углекислого газа.

Что изумило ученых, анализировавших фотографии в южной полярной шапки, так

это видимая толщина белого покрова, достигающая 80 см. Они считают, что это

почти наверняка замерзшая углекислота, поскольку в атмосфере Марса нет

достаточного количества воды для столь обширных залежей снега или льда. В

пользу такого предположения говорят и температурные измерения. Так,

инфракрасный радиометр «Маринера - 7» зарегистрировал у южной полярной шапки

минимальную температуру –160°С, а среднюю –118°С, что примерно соответствует

температуре замерзания углекислоты при том атмосферное давление, которое

существует у поверхности Марса.

Однако по многолетним наблюдениям с Земли установлено, что вещество полярных

шапок полностью не исчезает даже при температурах, близких к нулю. Поэтому

скорее всего полярные шапки включают в себя как затверденевшую углекислоту,

так и небольшое количество замерзшей воды. Не исключено, что под полярными

шапками (в слое вечной мерзлоты) имеется также лед.

По данным «Марса - 3», температура поверхности северной полярной шапки

составляет –110°С.

Наблюдения южной полярной шапки с борта автоматических станций – спутников

Марса показали, что в течении лета она не растаяла. Это означает, что она не

может состоять только из углекислоты. Согласно расчетам, скорость испарения

углекислоты в условиях марсианского лета на столько высока, что к концу лета

она должна исчезнуть полностью. Скорость же испарения водяного льда,

напротив, достаточно низка, и он может частично сохраняться. Это позволяет

сделать вывод, что южная полярная шапка состоит из остатков льда, покрытого

слоем углекислоты. В течении каждого марсианского лета углекислота

испаряется, обнажая ледяной слой (рис. 3).

Поскольку времена года тесно связаны с климатом планеты, рассмотрим вкратце и

этот вопрос.

Климат Марса.

На нем значительно холоднее, чем на Земле. И это не удивительно. Во-первых,

потому, что Марс находится в полтора раза дальше от Солнца, чем Земля, и

солнечные лучи согревают его поверхность в 2 с лишним раза слабее, чем

земной. Ведь интенсивность солнечных лучей убывает обратно пропорционально

квадрату расстояния от Солнца! А раз так, то на Марсе Солнце светит и греет

1,52 в кв.=2,31 раза слабее.

Во-вторых, как уже было сказано выше, среднее атмосферное давление у

поверхности планеты не превышает 6 мбар., то есть соответствует давлению

земной атмосферы на высоте 35 – 40 км. над поверхностью Земли. А так как на

этой высоте в земной атмосфере свирепствует жесточайший мороз, то можно

сказать, что и на поверхности Марса существуют аналогичные условия.

Сплошных облачных образований, которые мы наблюдаем на Земле, на Марсе нет. В

любом районе почти всегда безоблачно. Лишь изредка можно увидеть облака,

состоящие, вероятно, из ледяных кристаллов. Они образуются в результате

конденсации водяных паров, плавающих в атмосфере. Поэтому марсианская

атмосфера очень сухая. Правда, на Марсе часты легкие туманы, возникающие на

короткий срок и, главным образом, в утренние часы. Когда же воздух прогреется

солнечными лучами, они рассеиваются. Эти марсианские туманы напоминают ту

морозную мглу, которая временами появляется в земной атмосфере в морозное

утреннее время, а с потеплением рассеивается.

На Марсе, так же как и на Земле, имеются климатические пояса. Правда,

температурные колебания в них значительно больше, чем на Земле. Ведь на Марсе

нет в таком изобилии, как на Земле, водяных паров и океанов, этих мощных

аккумуляторов тепла, регулирующих климат планеты путем накопления и выделения

тепла при смене сезонов. В ряду разряженности атмосферы Марс не может

эффективно задерживать тепло, полученное его поверхностью в течении дня и, в

следствие этого, огромное количество тепла ночью улетучивается в космическое

пространство. Поэтому для Марса характерны резкие колебания температуры в

течении суток. Если днем на экваторе температура поверхности может достигать

+30°С, то ночью она падает до –100°С и более. Среднегодовая температура для

всей поверхности Марса на 50 – 60°С ниже, чем на Земле. Для сравнения укажем,

что на Земле оно около +10°С. полдень в районе экватора, где Солнце стоит в

зените, поверхность нагревается достаточно сильно. С приближением же Солнца к

горизонту температура быстро снижается и к закату светила доходит до нуля

градусов. Ночью мороз крепчает, и к восходу Солнца температура достигает

–100°С. И это в самом теплом, экваториальном поясе! В умеренном же поясе

зимой температура днем и ночью держится на очень низком уровне –60-80°С. В

полярных же областях, где летом Солнце совсем не заходит в течении нескольких

месяцев, температура непрерывно держится в пределах от 0 до +10°С. Как раз в

это время наблюдается быстрое разрушения светлого полярного покрова.

В следствие прецессии ось вращения Марса имеет свое положение в пространстве

и каждые 25 тыс. лет ориентируется таким образом, что ни одна из полярных

шапок в перигелии не обращена в сторону Солнца. В такие периоды на Марсе

могут возникать климатические условия, при которых происходит таяние вечной

мерзлоты. Оно, как предполагают, сопровождается кратковременными ливневыми

дождями, которые могут вызывать эрозионные процессы (рис. 4).

Анализируя фотографии полярных областей Марса, сделанные автоматическими

станциями с близкого расстояния, ученые высказывают предположения о том, что

на Марсе, возможно, наступил ледниковый период. Южная полярная шапка в

перигелии марсианской орбиты обращена в сторону Солнца, и здесь холодные зимы

сменяются жарким летом. В районе северной полярной шапки температурные

контрасты зимы и лета несколько смягчены. Заметим, что в виду значительного

эксцентриситета орбиты Марса разность солнечной постоянной в перигелии и

офелии орбиты составляет около 40%.

Как это ни парадоксально, но на Марсе самыми теплыми являются полярные районы

летнего полушария, где за длительное летнее полугодие незаходящее Солнце

успевает нагреть верхний слой грунта выше средних дневных температур по диску

планеты. Поэтому в летнем полушарии температура вдоль меридиана меняется

незначительно, и ветры не очень сильны. В зимнем же полушарии, напротив,

температура резко падает от экватора к зимней полярной шапки.

Из-за большого перепада температуры в зимнем полушарии Марса дуют сильные

ветры. По расчетам ученых, на высоте 12 км. их скорость может достичь 170

м./с. Вследствие этого в атмосфере развивается активная циклоническая и

антициклоническая деятельность. Однако дожди или снег в нашем «земном»

понимании вряд ли сопровождают марсианские циклоны. И это потому, что в

марсианской атмосфере мало воды. Поэтому очень редко образуются в атмосфере

Марса и облака. Только утром и вечером в умеренных широтах можно наблюдать

облака, напоминающие дымку. Таким образом, на Марсе, если, конечно, нет

пыльных бурь, всегда стоит прекрасная погода. И видимость там на много лучше,

чем на Земле, из-за малого рассеивания света на частицах пыли в воздухе.

Особенно хорошая видимость в летнем полушарии, где ветры заметно слабее и

пыли меньше. Космическими аппаратами зафиксировано сильное отражение от

поверхности планеты солнечной ультрафиолетовой радиации. Слой озона земной

атмосферы задерживает это губительное для жизни излучение. На Марсе такой

«защиты» нет. А это имеет важное значение для органической жизни.

Жизнь на Марсе.

Вряд ли какая-нибудь другая планета Солнечной системы возбуждала столько

надежд среди тех, кто искал жизнь на других небесных телах! Начиная с 70-х

годов ХIX века, вопрос – «Есть ли жизнь на Марсе?» - кочует по страницам как

научно-фантастических, популярных, так и научных книг. И объясняется это не

только близостью этой планеты, сколько сравнительно легкой доступностью ее

для обозрения с помощью даже не очень сильных телескопов (благодаря

прозрачности ее атмосферы).

До какой степени в начале даже нашего века было модным и всеобщим

предположение о вероятности разумной жизни на Марсе, свидетельствует

сенсация, сообщенная астрономом В. Пикерингом 8 декабря 1900 года из

Ловелской обсерватории (Дунлас). В посланной им телеграмме, молниеносно

облетевшей весь мир, он сообщил, что северном краю Икарийского моря на Марсе

в продолжение 70 минут был виден яркий выступ. Совершенно серьезно обсуждался

вопрос о «сигнальных огнях» жителей Марса.

Наличие атмосферы, не слишком суровый климат, таинственные каналы – не

свидетельствует ли все это о том, что на Марсе когда-то была высокоразвитая

цивилизация! Не исключено, что на этой загадочной во многом планете, издавна

волнующей человеческое воображение возможностью существования жизни, люди

могут встретить ее в самом неожиданном виде. И совершенно справедливо

замечают по этому вопросу некоторые ученые, что если на Марсе будут найдены

жилые организмы, то без преувеличения можно сказать, что их изучение станет

биологической связью землян с инопланетной жизненной формой. И нет сомнений в

том, что земное человечество сможет оказать весьма существенное влияние на

дальнейшее ее развитие. Однако сложность решения этой проблемы заключается

нее столько в посылке на Марс космических аппаратов и доставке специальных

приборов на его поверхность, сколько в том, по каким признакам мы должны

судить о наличии или отсутствии жизни на планете. В настоящее время мы еще не

имеем достаточно надежного метода, позволяющего различать формы «на грани

жизни» от отсутствия каких-либо ее признаков, но можно различить три большие

группы вопросов.

Во-первых, вопросы, связанные с тем, имеют ли исследуемые планеты химические

соединения, подобные аминокислотам и белкам;

Во-вторых, вопросы, связанные с тем, имеет ли место обмен веществ –

поглощаются ли питательные вещества зеленого типа существующими формами жизни

в химических реакциях, которые характерны для земной жизни;

В-третьих, вопросы, связанные с тем, какими средствами могут быть обнаружены

формы жизни (животные), остатки жизненных форм (ископаемые) или искусственные

сооружения.

Ни один из этих вопросов не является окончательным, так как все они

допускают, что жизнь на Марсе подобна земной. Тем не менее мы вынуждены пока

исходить именно из этого предположения, беря за основу три отличительных

признака жизни: обмен веществ, размножение и эволюция. Эти признаки

универсальны для всех живых организмов на Земле. С этой точки зрения

чрезвычайно важной проблемой является изучение физических условий на Марсе с

целью определения, насколько они благоприятны для протекания биологических

процессов. По мнению учены, полученные данные не исключают возможности жизни

на Марсе. Измерения, проведенные с помощью ультрафиолетового спектрометра,

показали, что формы жизни на Марсе, если они существуют, должны были

выработать механизм защиты от этого излучения.

С этой точки зрения большое значение придаются углекислоте, которая может

защитить от ультрафиолетового излучения. Койпер и Юри считают, что Марс в

прошлом мог быть теплее и иметь более мощную и влажную атмосферу. Ее облачный

покров удерживал температурные колебания на значительно более низком уровне,

чем сейчас. В результате фотолиза водяного пара в атмосфере появился

кислород. В этих условиях начала развиваться растительная жизнь, а после

возникновения фотосинтеза появились дополнительные источники кислорода.

Однако вследствие относительно малой массы планеты кислород мог улетучиться в

космическое пространство. Окисление железа на поверхности могло ускорить

потерю кислорода и, вполне возможно, что это так и было, потому что

поверхность Марса имеет характерную оранжевую окраску. В результате

длительного процесса постепенно образовалась тонкая, сухая и холодная

атмосфера. Процесс этот сопровождался увеличением интенсивности

ультрафиолетового и рентгеновского излучения и потока солнечных протонов на

поверхность. Это создало суровые физические условия, к котрым любая возникшая

растительность должна была приспособиться.

В лаборатории космической биологии Института цитологии Академии наук СССР уже

в течение ряда лет проводятся исследования по определению границ жизни. Для

этого создана специальная камера – «фотостат». В нем иммитируются физические

условия, существующие на Марсе. Эксперименты показали, что некоторые формы

микроорганизмов и простейших способны выживать в «марсианских условиях»

довольно длительное время, а ряд микроорганизмов - даже размножаться. К их

числу относятся микроорганизмы, выделенные из почв Антарктиды. Таким образом

доказано, что многим живым существам присущ большой «запас прочности»,

позволяющий им переносить крайне суровые условия, в том числе сходные с

марсианскими. Это дает возможность предположить наличие существования на

Марсе микроорганизмов, близких по своей природе к земным.

Ф. Солсбери придерживается мнения, что проявления жизни на Марсе могут

наблюдаться телескопически, то эта жизнь должна удовлетворять следующим пяти

критериям:

1. Она должна образовать сообщества, занимающие большие площади, видимые с

Земли.

2. Ее окраска должна соответствовать наблюдаемой и должна реагировать на

изменение температуры и влажности.

3. Она должна быть ответственна на наблюдаемые быстрые изменения размеров и

формы темных областей и быть способной быстро возобновляться после пылевых

заносов.

4. Она должна проявлять эти свойства в суровых условиях Марса.

5. Удовлетворять определенным основным принципам экологии, таким, как

кругооборот элементов, свойственный нашей планете.

На основаниях этих условий Ф. Солсбери считает маловероятным, чтобы какие-

либо из низших форм жизни могли удовлетворять критериям 1,2 и 3. Лишайники,

например, найденные в Сахаре и Антарктиде, удовлетворяют критерию 4 лучше

любого другого известного земного организма. Однако они не могут

удовлетворять остальным критериям. Ведь они не имеют сезонных изменений

цвета, растут крайне медленно, форма и высота их таковы, что они не могут

легко пробираться сквозь слой пыли, поэтому в атмосфере, имеющей столь низкую

влажность, они едва ли могут образовать колонии, видимые с Земли. Стало быть

более вероятно существование на Марсе высшей растительности, ибо она

удовлетворяет всем этим критериям, за исключением четвертого. Возможно также

наличие некоторых видоизмененных форм растительности с пигментом, способным

экранировать ее от сильного ультрафиолетового облучения. Этот пигмент может

поглощать солнечное излучение, что позволяет растительности удерживать тепло.

Несмотря на крайнюю сухость и отсутствие кислорода, у марсианской

растительности может осуществляться либо земной цикл фотосинтеза, либо какой-

то иной биохимический процесс с участием других элементов. Подобными

исследованиями занимался и на это указывал основатель астробиологии советский

ученый Гавриил Адрианович Тихов. Он пришел к выводу, что марсианская

растительность действительно сильно напоминает арктическую флору Земли. И

если в окрестностях Верхоянска и Оймякона – самом холодном районе Северного

полушария – произрастает около двухсот видов растений, то почему бы

аналогичным растениям не расти на Марсе?! Г. А. Тихов показал, что если

преобладающим цветом земной растительности является зеленый, то марсианская

флора должна быть голубого и темно-голубого цвета. Почему? Дело в том, что в

более суровых, чем на Земле, марсианских условиях растения будут поглощать

более теплые лучи и отражать более холодные – синие и фиолетовые.

Наиболее благоприятным фактором, ограничивающим возможность существования

жизни на Марсе, следует признать чрезвычайно малое содержание воды в

атмосфере и полное ее отсутствие, по крайней мере, в жидком виде - на

поверхности.

Водоемы диаметром более 300 м. исключаются совершенно, так как в противном

случае при прозрачной атмосфере планеты наблюдались бы яркие блики Солнца.

Однако это вовсе не означает, что под поверхностью Марса также нет воды. Ведь

не исключено, что значительная часть первоначального запаса воды на Марсе

могла превратиться в подпочвенный лед и таким путем избежать диффузии в

космос. Такого мнения придерживаются ученые Ю. Давыдов, К. Саган, Д.

Лидерберг и другие. В некоторых случаях (вблизи горячих источников, очагов

вулканической деятельности) этот подпочвенный лед может таять и увлажнять

поверхность, тем самым создавая благоприятные условия для развития жизни.

Есть все основания предполагать, - утверждает советский планетолог В.

Дерпгольц, - что подповерхностные марсианские воды более обильны, чем

подземные, так как Марс находится дальше от Солнца, и, хотя атмосфера его уже

была неплотная при возникновении планеты, в ней должно было сохраниться

больше воды, чем на Земле. Этому в дальнейшем способствовала и мерзлотная

покрышка марсианских пород. Свободной воды в атмосфере и на поверхности этой

планеты мало. Но связанная вода, содержащаяся в породах Марса, по-видимому,

весьма обильна – она может составлять одну треть их веса. Довольно уверенно

можно предположить, что породы, покрывающие поверхность Марса, близки к

гидрату оксида железа, так называемому лимониту, в состав которого входит

приблизительно 34% воды. Эту воду можно получить из породы, если ее сильно

нагревать.

Чтобы ответить на вопрос, могла ли возникнуть жизнь на Марсе, надо

исследовать марсианские условия, выяснить, какой путь прошла планета. Если,

скажем, будет установлено, что на Марсе когда-то существовали океаны, то

значит и возможность возникновения жизни станет весьма вероятной. Известно,

что для образования сложных органических соединений необходимо присутствие

азота. А его в марсианской атмосфере меньше пяти процентов. Но если его

сейчас практически нет, то был ли он ранее?

Точно так дело обстоит и с кислородом. Пока что на Марсе он вообще не

обнаружен. Но и на Земле живут анаэробные микроорганизмы, которые обходятся

без него, больше того, есть даже микробы, которые погибают от этого

«живительного» газа.

Одно из самых неблагоприятных обстоятельств заключается в том, что слабая

атмосфера Марса не в силах удержать мощное ультрафиолетовое излучение Солнца,

которое там достигает поверхности планеты. А известно, что для земных форм

жизни воздействие такого облучения губительно. И если бы не слой озона,

имеющийся в земной атмосфере, который поглощает большую часть

ультрафиолетового излучения Солнца, вполне вероятно, что и на нашей планете

жизни, подобной земной, не было бы.

Правда, не следует забывать о способности живых организмов приспосабливаться

к внешним условиям. Ведь и на нашей планете нет практически ни одного

стерильного места: во льдах Антарктиды и в пекле Сахары, в глубинах мирового

океана и на исполинских вершинах гор – всюду мы находим простейшие живые

организмы. Они даже живут в атомных котлах!

Фотоснимки Марса, сделанные с борта автоматических станций, не дали прямых

доказательств существования жизни на нем. Обилие же кратеров и отсутствие

тектонических структур, подобных земным, свидетельствует, что на Марсе очень

давно нет океанов, сравнимых по размеру с земными, а скорее всего их никогда

и не было. И все же, не смотря на это, многие ученые предпочитают не спешить

с окончательными выводами по этому вопросу. Ибо наличие на Марсе элементов

рельефа, происхождение которых может быть объяснено только воздействием

жидкостной эрозии, признаки присутствия льда в южной полярной области, утечка

водяных паров из атмосферы – все это позволяет предположить возможность жизни

на Марсе.

Противостояния Марса.

Двигаясь по орбите, Земля, имея бо’льшую, чем Марс, скорость, пробегает свой

более короткий путь быстрее и поэтому время от времени она как бы догоняет

Марс, чтобы затем его перегнать. Когда это случается, то Солнце, Земля и Марс

выходят на одну прямую линию. Такое расположение их называется

противостоянием, потому что в это время для того, кто смотрит с Земли, Марс

виден в точке неба, как раз противоположной Солнцу (рис. 5).

Противостояния Марса по отношению к Земле происходят в среднем с интервалом

780 суток (средний синодический период обращения обеих планет). Если бы

орбиты планет были концентрическими окружностями, лежащими в одной плоскости,

и имели бы общий центр в центре Солнца, все противостояния Марса были бы

всегда одинаковыми. Но эллиптичность планетных орбит и тот факт, что они

лежат в разных плоскостях, нарушают эту воображаемую стройную картину.

Поэтому одно противостояние отличается от другого. Бывает, что во время

противостояния Марс удален от Земли почти на 100 млн. км., а при самых

благоприятных из них дистанция Земля – Марс сокращается до 56 млн. км. Такие

противостояния называются великими. Поскольку действительный синодический

период отличается от среднего синодического периода на величину до 20 суток,

великие противостояния повторяются через 15 – 17 лет, хотя обе планеты

встречаются регулярно через 780 суток в разных частях своих орбит. Поскольку

во время великих противостояний Марс ближе всего подходит к Земле и находится

на расстоянии примерно 56 млн. км., то в это время представляется наилучшая

возможность для астрофизических наблюдений Марса. Последнее такое

противостояние произошло 10 августа 1971 года. Но сближение двух планет до

минимального расстояния (из-за эксцентричности их орбит) было не в день

великого противостояния, а двумя днями позже. 12 августа расстояние Земля –

Марс было минимальным – 56,2 млн. км. В это время видимый с Земли поперечник

Марса увеличился до 25 секунд дуги, а блеск достиг 2,6 звездной величины (для

сравнения укажем, что ярчайшая из звезд Сириус имеет блеск 1,4 звездной

величины). Хотя само противостояние, строго говоря, происходит только в

какой-то один конкретный момент времени, Марс удобно наблюдать и до и после

противостояния (примерно в продолжение двух-трех месяцев).

Преимущества великих противостояний состоят не только в том, что Марс близко

подходит к Земле, но и в том, что они происходят в августе и в сентябре,

когда условия наблюдения за Марсом наиболее благоприятные. Не менее важно еще

и то, что в этот период Марс остается сравнительно недалеко от Земли в

течение нескольких месяцев. Поэтому неудивительно, что именно годы великих

противостояний всегда были наиболее плодотворыми в отношении новых открытий,

касающихся Марса. Именно в эти периоды или в самые близкие к ним годы были

открыты на Марсе «моря» и «материки» (в 1836 году итальянским астрономом

Фонтана), полярные шапки (в 1716 году астрономом Моральди), знаменитые каналы

и оазисы (в 1877 году итальянскими астрономами Секки и Скиапарелли). В том же

году американский ученый Холл открыл два спутника Марса. В периоды великих

противостояний были зафиксированы сезонные изменения цвета на поверхности

планеты (1892 год), пылевые бури (1909 год). В результате наблюдений Марса в

период великого противостояния 1956 года удалось зафиксировать значительные

измениия в его атмосфере и на поверхности – сильные пылевые бури и туманы.

Атмосфера Марса была очень непрозрачной и заполнена мглой. Несмотря на это,

ученые отметили изменения интенсивности темных и светлых деталей на

поверхности планеты. Во время великого противостояния Марс располагается

таким образом, что к Солнцу и к Земле обращено его южное полушарие. В это

время в северном полушарии Марса всегда бывает осень, а в южном – весна.

Поэтому бо’льшая часть добытых сведений о Марсе получена из исследований

южного полушария.

Фобос и Деймос.

У спутников Марса довольно любопытная история. Впервые о них упомянул

ирландский сатирик Джонатан Свифт на страницах своего фантастического романа

– памфлета «Путешествие Гулливера» еще в 1726 году. Вот что он писал: «.Это

преимущество в телескопах позволяло им в своих открытиях оставить далеко

позади наших европейских астрономов. Так, ими составлен каталог десяти тысяч

неподвижных звезд. Между тем, как самый обширный из наших каталогов (имеется

ввиду европейский – Н. В.) содержит не больше одной трети этого числа. Кроме

того, они открыли две маленькие звезды или спутника, обращающихся около

Марса, из которых ближайший к Марсу удален от центра этой планеты на

расстояние, равное трем диаметрам Марса; более далекий находится от нее на

расстоянии пяти таких же диаметров. Первый совершает свое обращение в течении

десяти часов, а второй – в течении двадцати одного с половиной часа. Так что

квадраты времен их обращения почти пропорциональны кубам их расстояния от

центра Марса, каковое обстоятельство с очевидностью показывает, что

означенные спутники управляются тем самым законом тяготения, которым

подчиняются другие небесные тела.»

Это было написано Д. Свифтом в тот период, когда И. Ньютон открыл закон

всемирного тяготения, управляющий движением небесных тел, и его теория

тяготения волновала всех мыслящих людей. О двух спутниках Марса писал

несколькими годами позже Д. Свифта и великий Вольтер в своем «Микромегасе»

(1752г.): «Человек ростом более чем 30 км., который прибыл с одной из планет

Сириуса, и вместе с жителем Сатурна, сущим «карликом» - ростом не более

полутора километров, - решил исследователь Солнечную систему. Их пребывание

на Марсе было весьма кратковременным, поскольку он оказался для них слишком

маленьким. Но, подобно Гулливеру, они обнаружили, что у Марса есть два

спутника.»

Действительное открытие спутников Марса принадлежит астроному Асафу Холлу.

Наблюдая Марс в год великого противостояния (11 августа 1877 года), А. Холл

обнаружил около яркого диска планеты слабосветящуюся звездочку. Следующие

ночи были облачные, но 16 августа вновь была хорошая видимость, и он

невдалеке от ранее наблюдаемой звездочки увидел вторую такую же звездочку.

Обе они двигались вокруг Марса в плоскости его экватора. По традиции А. Холл

дал им имена двух сыновей римского бога войны Арес (Марса), сопровождавших

его в битвах во время Троянской войны, - Фобоса и Деймоса (Страх и Ужас).

Ближайший к Марсу Фобос движется по почти круговой орбите, на расстоянии

около 9380 км. от поверхности планеты. Он совершает оборот вокруг нее за 7 ч.

39 мин. 13 с., т. е. в три с лишним раза быстрее периода осевого вращения

самой планеты. Если учесть, что сутки на Марсе длятся 24 ч. 37 мин., то Фобос

успевает почти три раза обежать вокруг планеты, пока сама она сделает только

один оборот. Это, кстати, единственный случай, известный в астрономии, когда

естественный спутник обращается быстрее, чем вращается сама планета. За час

Фобос перемещается на 33 градуса. Так как направление движения у спутника и

планеты одно и то же, то наблюдатель, находящийся на Марсе, будет видеть его

стремительно движущимся навстречу всему звездному хороводу и заходящим не на

западе, как все светила, а на востоке.

Деймос удален от центра планеты на 23500 км. Полный оборот вокруг Марса он

совершает за 30 ч. 17 мин. 17 с. Находясь на Марсе, можно наблюдать медленное

его перемещение среди звезд с востока на запад каждый час на три градуса.

Поэтому он от восхода и до захода около 65 часов, находится над горизонтом.

Для воображаемых жителей этих двух спутников сама планета Марс должна

представляться ни с чем несравнимой, величественной и поистине великолепной

картиной. С Фобоса поверхность Марса будет выглядеть в 6,7 тысяч раз больше

Солнца, видимого с Земли. И это гигантское тело на небосводе Фобоса три раза

в сутки будет наблюдаться через все фазы, проходимые нашей луной за месяц.

Может быть, эти спутники и не представляли бы собой особенно большого

интереса, если бы они не обладали некоторыми специфическими особенностями.

Во-первых, таких маленьких Лун не имеет ни одна планета (размер Фобоса

составляет 25*21 км., а Деймоса 13,5*12 км. с ошибкой измерения от 0,5 до 5

км.). Во-вторых, они очень близки к своей планете. В-третьих, Фобос и Деймос

движутся по орбитам, плоскости которых лишь незначительно наклонены к

плоскости экватора Марса (1,8° и 1,4° соответственно). И, наконец,

американский ученый Б. Шарплесс в 1940 году заподозрил, что Фобос движется

ускоренно и по спирали очень медленно приближается к Марсу. Период его

обращения уменьшается примерно на одну миллионную долю секунды. По этому

вопросу было высказано немало различных предположений. В 1959 году советский

ученый И. Шкловский, проанализировав все предложенные гипотезы, пришел к

выводу, что единственным приемлемым объяснением столь странного поведения

Фобоса может быть его пустотелость. Отсюда возникла смелая гипотеза об

искусственном происхождении спутников Марса. По его предположению, они

созданы много миллионов лет назад разумными существами. Вероятно, на Марсе в

ту далекую пору были благоприятные условия для жизни и там существовали

разумные обитатели, достигшие высокого уровня культуры. И, возможно, что они

– оставшиеся памятники когда существовавшей высокоразвитой цивилизации. Эта

гипотеза, довольно близка к фантастики, наделала в свое время много шума.

Сравнительно недавно научный сотрудник астрономического института имени

Штернберга С. Вашковьяк разработала новую аналитическую теорию движения

спутников Марса, которая учитывает несферичность планеты, гравитационное

влияние Солнца и взаимные возмущения Фобоса и Деймоса. Применив эту теорию к

наблюдениям движения спутников Марса за 50 лет (с 1877 по 1926 гг.), С.

Вашковьяк показала, что расчеты Б. Шарплесса ошибочны. Никакого ускорения

Фобоса на самом деле нет. Поскольку спутники очень малы, на Марсе никогда не

бывает солнечных затмений.

«Маринер - 7» сфотографировал Фобос на фоне поверхности Марса. Тщательный

анализ этой фотографии показал, что Фобус имеет форму дыни и что самое

любопытное – его поверхность очень темная. Она отражает всего около 6

процентов солнечного света, и потому он является самым темным телом солнечной

системы.

Не исключено, что Фобос и Деймос – бывшие астероиды, когда-то захваченные

Марсом и выведенные им на современные орбиты.

Небо Марса.

Еще до полета космонавтов летчики сообщали о том, что с увеличением высоты

небо все более и более темнеет. Светло-голубой цвет его постепенно переходит

в синий, а затем в темно-синий. Происходит это оттого, что чем выше, тем

меньше плотность воздуха. А раз так, там и меньше рассеиваются голубые и

синие лучи солнечного света. Из доклада первого в мире космонавта Юрия

Гагарина мы узнали, что из корабля «Восток» небо казалось угольно-черным. Это

же подтвердили и другие космонавты.

У поверхности Марса, как мы уже говорили, плотность газовой оболочки примерно

такая же, как на высоте 30-35 км. над поверхностью Земли. Поэтому цвет

марсианского неба в дневное время имеет темно-синий оттенок. Ведь характер

рассеивания света газовой средой не зависит от ее химического состава и

определяется размерами частиц, рассеивающих солнечные лучи. В чистом

незапыленном воздухе свет рассеивают молекулы газа. Их размеры, очевидно, так

же малы в марсианской атмосфере, как и в земной. На Земле рассеянный в

атмосфере свет окрашивает небесный свод в голубые тона. Это происходит

потому, что малые частицы рассеивают внутри газовой оболочки именно голубые

лучи.

Поскольку наклонение орбиты Марса к эклиптике незначительно (всего лишь 1°

51’), то для наблюдателя, находящегося на Марсе, как и для земного, путь

Солнца среди звезд проходит по тем же зодиакальным созвездиям (рис. 6). Наше

дневное светило выглядит менее ярким, а диаметр его видимого диска в полтора

раза меньше, чем при наблюдении с Земли. Суточное вращение небесного свода

имеет почти ту же скорость, что и на земном небосводе. Но так как ориентация

оси вращения Марса отлична от положения в пространстве земной оси, то

вращение небесного свода происходит вокруг иной точки. Северный небесный

полюс расположен в созвездии Лебедя и не отмечен на фоне моечного пути какой-

либо яркой звездой. Точку полюса среди звезд можно найти в середине линии,

соединяющей звезды альфа Цефея и альфа Лебедя (Денеб). Южный полюс находится

в созвездии Парусов. Очертания созвездий на марсианском небе аналогичны

земным.

Благодаря значительно меньшей, чем на Земле, плотности атмосферы, звезды

будут выглядеть ярче, а их мерцание менее заметно. Яркие звезды,

расположенные на небосводе ближе к зениту, можно увидеть даже в дневное

время, конечно, при отсутствии облачности и запыленности атмосферы. Планеты

на марсианском небе, так же как и на земном, будут видны в пределах

зодиакальных созвездий. Поскольку орбита Земли проходит внутри орбиты Марса,

то с Марса невозможно увидеть Землю в полной фазе. То же самое относится к

Меркурию и Венере. Максимальное удаление Земли от Солнца не превышает 30-35°.

Полоса Млечного пути на марсианском небе проходит через оба полюса мира.

Находясь на одном из полюсов Марса, наблюдатель сможет увидеть в полярную

ночь, как огромная арка Млечного пути, проходящая через зенит, в течение

суток обращается вокруг него. А на экваторе Марса он сможет видеть, как при

суточном вращении неба арка Млечного пути, будто бы закрепленная в точках

севера и юга, поднимается на восточной стороне марсианского горизонта,

проходит через зенит и скрывается за горизонт на западе. Одновременно на

востоке появляется другая арка – вторая половина кольца Млечного пути.

Полоса Млечного пути явится хорошим ориентиром для приближенного определения

сторон горизонта на Марсе. Точки, в которых середина полосы пересекает линии

горизонта, – точки севера и юга.

В заключение хочется сказать, что у Марса завидная судьба – нет людей,

равнодушных к нему. История его познания свидетельствует, что, как только

появляется какая-либо новая гипотеза, она тотчас завоевывает себе горячих

сторонников и не менее темпераментных противников. Но справедливы гипотезы

или нет, – заметил известный канадский физиолог Селье, – они всегда

определяли направления научных поисков.

Список использованной литературы.

1. Бакулин П. И., Кононович Э. В., Мороз В. И. «Курс общей астрономии»

2. Варваров Н. А. «Человек исследует планеты»

3. Данлог С. «Азбука звездного неба»

4. Цесеевич В. П. «Что и как наблюдать на небе»

Страницы: 1, 2


бесплатно рефераты
НОВОСТИ бесплатно рефераты
бесплатно рефераты
ВХОД бесплатно рефераты
Логин:
Пароль:
регистрация
забыли пароль?

бесплатно рефераты    
бесплатно рефераты
ТЕГИ бесплатно рефераты

Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.