|
Классификация и эволюция звёздp align="left">Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений. И тем не менее общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных «кладбищах» в виде чёрных, невидимых карликов.Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды» [6]. 4.4 Сверхновые Звезда с массой, превосходящей солнечную примерно на 20%, может со временем стать неустойчивой. Это показал в своём блестящем теоретическом исследовании, сделанном в конце 30-х годов нашего столетия, астроном Чандрасекар. Он установил, что подобные звёзды на склоне жизни порой подвергаются катастрофическим изменениям, в результате чего достигается некоторое равновесное состояние, позволяющее звезде достойно завершить свой жизненный путь. Многие астрономы занимались изучением последних стадий звёздной эволюции и исследованием зависимости эволюции звезды от её массы. Все они пришли к одному выводу: если масса звезды превышает предел Чандрасекара, её ожидают невероятные изменения. Как мы видели, устойчивость звезды определяется соотношением между силами гравитации, стремящимися сжать звезду, и силами давления, расширяющими её изнутри. Мы также знаем, что на последних стадиях звёздной эволюции, когда истощаются запасы ядерного горючего, это соотношение обеспечивается за счёт эффекта вырождения, которое может привести звезду к стадии белого карлика и позволит ей провести остаток жизни в таком состоянии. Став белым карликом, звезда постепенно остывает и заканчивает свою жизнь, превратившись в холодный, безжизненный, невидимый звёздный шлак. Если масса звезды превосходит предел Чандрасекара, эффект вырождения уже не в состоянии обеспечить необходимое соотношение давлений. Перед звездой остаётся только один путь для сохранения равновесия - поддерживать высокую температуру. Но для этого требуется внутренний источник энергии. В процессе обычной эволюции звезда постепенно использует для этого ядерное горючее. Однако как может звезда добыть энергию на последних стадиях звёздной эволюции, когда ядерное топливо, регулярно поставляющее энергию, на исходе? Конечно она ещё не энергетический «банкрот», она большой, массивный объект, значительная часть массы которого находится на большом расстоянии от центра, и у неё в запасе ещё есть гравитационная энергия. Она подобна камню, лежащему на вершине высокой горы, и благодаря своему местоположению обладающему потенциальной энергией. Энергия заключённая во внешних слоях звезды, как бы находится в огромной кладовой, из которой в нужный момент её можно извлечь. Итак, чтобы поддерживать давление, звезда теперь начинает сжиматься, пополняя таким образом запас своей внутренней энергии. Как долго продолжается это сжатие? Фред Хойл и его коллеги тщательно исследовали подобную ситуацию и пришли к выводу, что в действительности происходит катастрофическое сжатие, за которым следует катастрофический взрыв. Толчком взрыву, избавляющему звезду от избытка массы, является значение плотности, создаваемое при сжатии. Избавившись от избыточной массы, звезда тут же возвращается на путь обычного угасания. Наибольший интерес для учёных представляет процесс, в ходе которого шаг за шагом осуществляется постепенное выгорание ядерного топлива. Для расчёта этого процесса используется информация, полученная из лабораторных опытов; огромную роль при этом играют современные быстродействующие вычислительные машины. Хойл и Фаулер смоделировали с помощью ЭВМ процесс энерговыделения в звезде и проследили её ход. В качестве примера они взяли звезду, масса которой втрое превосходит солнечную, то есть звезду, находящуюся далеко за пределом Чандрасекара. Звезда с такой массой должна иметь светимость, в 60 раз превышающую светимость Солнца, и время жизни около 600 млн. лет. Мы уже знаем, что в ходе обычных термоядерных реакций, протекающих в недрах звезды почти в течение всей её жизни, водород превращается в гелий. После того как значительная часть вещества звезды превратится в гелий, температура в её центре возрастает. При увеличении температуры примерно до 200 млн. К ядерным горючим становится гелий, который затем превращается в кислород и неон. Таким образом, гелиевое ядро начинает порождать более тяжёлое ядро, состоящее из двух этих химических элементов. Теперь звезда становится многослойной энергопроводящей системой. В тонкой оболочке, по одну сторону от которой находится водород, а по другую гелий, происходит превращение водорода в гелий; эта реакция идёт с выделением энергии. Поэтому, пока такая реакция осуществляется, температура ядра звезды неуклонно растёт. Сжатие звезды ведёт к уплотнению её ядра и росту температуры в центре до 200-300 млн. К. Но даже при столь высоких температурах кислород и неон вполне устойчивы и не вступают в ядерные реакции. Однако через некоторое время ядро становится ещё плотнее, температура удваивается, теперь она уже равняется 600 млн. К. И тогда ядерным топливом становится неон, который в ходе реакций превращается а магний и кремний. Образование магния сопровождается выходом свободных нейтронов. Когда звезда родилась из праматерии, она уже содержала некоторые металлы группы железа. Свободные нейтроны, вступая в реакцию с этими металлами, создают атомы более тяжёлых металлов - вплоть до урана - самого тяжёлого из природных элементов. Но вот израсходован весь неон в ядре. Ядро начинает сжиматься, и снова сжатие сопровождается ростом температуры. Наступает следующий этап, когда каждые два атома кислорода, соединяясь, порождают атом кремния и атом гелия. Атомы кремния, соединяясь попарно, образуют атомы никеля, которые вскоре превращаются в атомы железа. В ядерные реакции, сопровождающиеся возникновением новых химических элементов, вступают не только нейтроны, но также протоны и атомы гелия. Появляются такие элементы, как сера, алюминий, кальций, аргон, фосфор, хлор, калий. Температура ядра поднимается до полутора миллиардов градусов. По-прежнему продолжается образование более тяжёлых элементов с использованием свободных нейтронов, но на этой стадии из-за большой температуры происходят некоторые новые явления. Хойл считает ,что при температурах порядка миллиарда градусов возникает мощное гамма-излучение, способное разрушать ядра атомов. Нейтроны и протоны отрываются от ядер, но этот процесс обратимый: частицы вновь соединяются, создавая устойчивые комбинации. Когда температура превысит 1,5 млрд. К, более вероятными становятся процессы распада ядер. Любопытным и неожиданным оказался следующий результат: при дальнейшем увеличении температуры и усилении процессов разрушения и соединения ядра в итоге присоединяют всё больше и больше частиц и, как следствие этого, возникают более тяжёлые химические элементы. Так, при температурах 2-5 млрд. К рождаются титан, ванадий, хром, железо, кобальт, цинк, и др. Но из всех этих элементов наиболее представлено железо. Как и прежде, при превращении лёгких элементов в тяжёлые вырабатывается энергия, удерживающая звезду от коллапса. Своим внутренним строением звезда теперь напоминает луковицу, каждый слой которой заполнен преимущественно каким-либо одним элементом. Как отмечает Хойл, с образованием группы железа звезда оказывается накануне драматического взрыва. Ядерные реакции, протекающие в железном ядре звезды, приводят к превращению протонов в нейтроны. При этом испускаются потоки нейтрино, уносящие с собой в космическое пространство значительное количество энергии звезды. Если температура в ядре звезды велика, то эти энергетические потери могут иметь серьёзные последствия, так как они приводят к снижению давления излучения, необходимого для поддержания устойчивости звезды. И как следствие этого, в действие опять вступают гравитационные силы, призванные доставить звезде необходимую энергию. Силы гравитации всё быстрее сжимают звезду, восполняя энергию, унесённую нейтрино. Как и прежде сжатие звезды сопровождается ростом температуры, которая в конце концов достигает 4-5 млрд. К. Теперь события развиваются несколько иначе. Ядро, состоящее из элементов группы железа, подвергается серьёзным изменениям: элементы этой группы уже не вступают в реакции с образованием более тяжёлых элементов, а начинают снова превращаться в гелий, испуская при этом колоссальный поток нейтронов. Большая часть этих нейтронов захватывается веществом внешних слоёв звезды и участвует в создании тяжёлых элементов. На этом этапе, как указывает Хойл, звезда достигает критического состояния. Когда создавались тяжёлые химические элементы, энергия высвобождалась в результате слияния лёгких ядер. Тем самым огромные её количества звезда выделяла на протяжении сотен миллионов лет. Теперь же конечные продукты ядерных реакций вновь распадаются, образуя гелий: звезда оказывается вынужденной восполнить утраченную ранее энергию. Остаётся последнее её достояние - гравитация. Но чтобы звезда могла воспользоваться этим резервом, плотность её ядра должна увеличиваться крайне быстро, то есть ядро должно резко сжаться; происходит «взрыв внутрь», отрывающий ядро звезды от её внешних слоёв. Он должен произойти за считанные секунды. Это и есть начало конца массивной звезды. Имплозия, или взрыв внутрь, устраняет давление, поддерживавшее внешние слои звезды, её оболочку, и с этого момента оболочка, сжимаясь, начинает падать на ядро. Падение сопровождается выделением колоссального количества энергии - так ещё раз проявляет себя гравитация. Выделение энергии приводит в свою очередь к резкому повышению температуры (примерно 3 млрд. К ), и падающая оболочка звезды оказывается в необычных для неё температурных условиях. Для звезды с температурой ядра, равной 2,5 млрд. К, лёгкие элементы оболочки служат потенциальным ядерным топливом. Но чтобы обеспечить свечение во время взрыва, температура должна подняться выше этого значения - до 3 млрд. К. В течение секунды кинетическая энергия звезды превращается в тепловую, и вещество оболочки нагревается. При такой высокой температуре более лёгкие элементы - в основном кислород - проявляют взрывную неустойчивость и начинают взаимодействовать. Подсчитано, что за время меньше секунды в ходе этих ядерных реакций выделяется энергия, равная энергии, которую Солнце излучает за миллиард лет ! Внезапно освободившаяся энергия срывает со звезды её наружные слои и выбрасывает их в космическое пространство со скоростью, достигающей нескольких тысяч километров в секунду. На эти слои приходится значительная часть массы звезды. Газовая оболочка удаляется от звезды образуя туманность, которая простирается на многие миллионы миллионов километров. Газ по инерции продолжает удаляться от звезды до тех пор, пока, возможно через 100 000 лет, вещество туманности не станет настолько разряженным и диффузным, что больше уже не сможет возбуждаться коротковолновым излучением очень горячей материнской звезды ; тогда мы перестанем его видеть. Но самое главное: как в взорвавшемся веществе, так и в межзвёзном газе присутствует магнитное поле. Сжатие газа за фронтом ударной волны вызывает сжатие силовых линий и повышение напряжённости межзвёздного магнитного поля, что в свою очередь приводит к увеличению энергии электронов, и их ускорению. В результате остаётся сверхгорячая звезда, масса которой уменьшилась именно настолько, чтобы она могла достойно угаснуть и умереть. По всей вероятности она станет нейтронной звездой, масса которой в 1,2-2 массы Солнца. Если же её масса более, чем вдвое превышает массу Солнца, то она в конечном счёте может превратиться в чёрную дыру. Сверхновые - очень редкие объекты. История засвидетельствовала лишь несколько случаев появления сверхновых. Первая - это, конечно, Крабовидная туманность, вторая - Сверхновая Тихо Браге, обнаруженная в 1572г.., и третья - Сверхновая Кеплера, открытая им в 1604 г. Недавно стало известно о сверхновой в созвездии Волка. Астрономы вычислили, что каждая звёздная система, галактика, в среднем раз в сто-триста лет рождает сверхновую. В настоящее время астрономами открыто около 150 сверхновых. Только три из них оказались в нашей Галактике, хотя существует много объектов, такие, как Петля в Лебеде и Кассиопея А, которые, как предполагают, могут оказаться остатками взрывов сверхновых Млечного Пути. Точное время взрыва для Петли в Лебеде почти невозможно установить, но полагают, что если это действительно остатки взрыва сверхновой, то Петля в Лебеде начала своё расширение около 60 тысяч лет назад. Кассиопея А - самая молодая сверхновая на небе, так как её расширение началось примерно в 1700г. 4.5 Нейтронные «Звёзды, у которых масса в 1,5-3 раза больше, чем у Солнца не смогут в конце жизни остановить своё сжатие на стадии белого карлика. Мощные силы гравитации сожмут их до такой плотности, при которой произойдёт «нейтрализация» вещества: взаимодействие электронов с протонами привёдёт к тому, что почти вся масса звезды будет заключена в нейтронах. Образуется нейтронная звезда. Наиболее массивные звёзды могут обраться в нейтронные, после того как они взорвутся как сверхновые. Говоря о нейтронных звёздах, следует учитывать, что их физические характеристики установлены теоретически и весьма гипотетичны, так как физические условия, существующие в этих телах, не могут быть воспроизведены в лабораторных экспериментах. Решающее значение на свойства нейтронных звёзд оказывают гравитационные силы. По различным оценкам, диаметры нейтронных звёзд составляют 10-200 км. И этот незначительный по космическим понятиям объём «набит» таким количеством вещества, которое может составить небесное тело, подобное Солнцу, диаметром около 1,5 млн. км, а по массе почти в треть миллиона раз тяжелее Земли ! Естественное следствие такой концентрации вещества - невероятно высокая плотность нейтронной звезды. Фактически она оказывается настолько плотной, что может быть даже твёрдой. Сила тяжести нейтронной звезды столь велика, что человек весил бы там около миллиона тонн. Расчёты показывают, что нейтронные звёзды сильно намагничены. Согласно оценкам, магнитное поле нейтронной звезды может достигать 1млн. млн. гаусс, тогда как на Земле оно составляет 1 гаусс. Радиус нейтронной звезды принимается порядка 15 км, а масса - около 0,6 - 0,7 массы Солнца. Наружный слой представляет собой магнитосферу, состоящую из разрежённой электронной и ядерной плазмы, которая пронизана мощным магнитным полем звезды. Именно здесь зарождаются радиосигналы, которые являются отличительным признаком пульсаров. Сверхбыстрые заряженные частицы, двигаясь по спиралям вдоль магнитных силовых линий, дают начало разного рода излучениям. В одних случаях возникает излучение в радиодиапазоне электромагнитного спектра, в иных - излучение на высоких частотах. Почти сразу же под магнитосферой плотность вещества достигает 1 т/см3, что в 100 000 раз больше плотности железа. Следующий за наружным слой имеет характеристики металла. Этот слой «сверхтвёрдого» вещества, находящегося в кристаллической форме. Кристаллы состоят из ядер атомов с атомной массой 26 - 39 и 58 - 133. Эти кристаллы чрезвычайно малы: чтобы покрыть расстояние в 1 см, нужно выстроить в одну линию около 10 млрд. кристалликов. Плотность в этом слое более чем в 1 млн. раз выше, чем в наружном, или иначе, в 400 млрд. раз превышает плотность железа. Двигаясь дальше к центру звезды, мы пересекаем третий слой. Он включает в себя область тяжёлых ядер типа кадмия, но также богат нейтронами и электронами. Плотность третьего слоя в 1 000 раз больше, чем предыдущего. Глубже проникая в нейтронную звезду, мы достигаем четвёртого слоя, плотность при этом возрастает незначительно - примерно в пять раз. Тем не менее при такой плотности ядра уже не могут поддерживать свою физическую целостность: они распадаются на нейтроны, протоны и электроны. Большая часть вещества пребывает в виде нейтронов. На каждый электрон и протон приходится по 8 нейтронов. Этот слой, по существу, можно рассматривать как нейтронную жидкость, «загрязнённую» электронами и протонами. Ниже этого слоя находится ядро нейтронной звезды. Здесь плотность примерно в 1,5 раза больше, чем в вышележащем слое. И тем не менее даже такое небольшое увеличение плотности приводит к тому, что частицы в ядре движутся много быстрее, чем в любом другом слое. Кинетическая энергия движения нейтронов, смешанных с небольшим количеством протонов и электронов, столь велика, что постоянно происходят неупругие столкновения частиц. В процессах столкновения рождаются все известные в ядерной физике частицы и резонансы, которых насчитывается более тысячи. По всей вероятности, присутствует большое число ещё не известных нам частиц. Температуры нейтронных звёзд сравнительно высоки. Этого и следует ожидать, если учесть, как они возникают. За первые 10 - 100 тыс. лет существования звезды температура ядра уменьшается до нескольких сотен миллионов градусов. Затем наступает новая фаза, когда температура ядра звезды медленно уменьшается вследствие испускания электромагнитного излучения» [5]. 4.6 Чёрные дыры «Если масса звезды в два раза превышает солнечную, то к концу своей жизни звезда может взорваться как сверхновая, но если масса вещества оставшегося после взрыва, всё ещё превосходит две солнечные, то звезда должна сжаться в крошечное плотное тело, так как гравитационные силы всецело подавляют всякое внутреннее сопротивление сжатию. Учёные полагают, что именно в этот момент катастрофический гравитационный коллапс приводит к возникновению чёрной дыры. Они считают, что с окончанием термоядерных реакций звезда уже не может находиться в устойчивом состоянии. Тогда для массивной звезды остаётся один неизбежный путь - путь всеобщего и полного сжатия (коллапса), превращающего её в невидимую чёрную дыру. Каковы же физические свойства «чёрных дыр» и как учёные предполагают обнаружить эти объекты? Многие учёные раздумывали над этими вопросами; получены кое-какие ответы, которые способны помочь в поисках таких объектов. Само название - чёрные дыры - говорит о том, что это класс объектов, которые нельзя увидеть. Их гравитационное поле настолько сильно, что если бы каким-то путём удалось оказаться вблизи чёрной дыры и направить в сторону от её поверхности луч самого мощного прожектора, то увидеть этот прожектор было бы нельзя даже с расстояния, не превышающего расстояние от Земли до Солнца. Действительно, даже если бы мы смогли сконцентрировать весь свет Солнца в этом мощном прожекторе, мы не увидели бы его, так как свет не смог бы преодолеть воздействие на него гравитационного поля чёрной дыры и покинуть её поверхность. Именно поэтому такая поверхность называется абсолютным горизонтом событий. Она представляет собой границу чёрной дыры»[6]. Заключение Поставленную передо мной в начале работы цель (изучить как можно больше информации по выбранной теме, постараться всесторонне рассмотреть основные её вопросы, отобразить результаты исследований в курсовой и сделать вывод о проделанной работе) успешно выполнила. Особое внимание в своей работе я старалась уделить проблеме эволюции звёзд. Известен повышенный интерес учённых к происхождению чёрных дыр. «Некоторые из них рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте может случиться со Вселенной. Общепризнано, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. Однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной»[6]. Приложение 1
Приложение 2
Приложение 3 Зависимость параметров звезд главной последовательности от спектрального типа
Приложение 4 Рис. 1. Диаграмма Герцшпрунга -- Ресселла для звёзд плоской составляющей Галактики Рис. 2. Диаграмма Герцшпрунга -- Ресселла для звёзд сферической составляющей Галактики.Список литературы 1. Бабушкин А.Н. Современные концепции естествознания: Курс лекций. СПб.: Омега-Л, 20042. Дубинцева Т.Я. Концепции современного естествознания. Новосибирск: ООО Издательство «ЮКЭА», 19973. Левитан Е.П. Астрономия. 11 класс. М.: Просвещение, 20044. Хабер Х. Звезды. М.: «Слово», 19985. Шкловский И. С. Звезды: их рождение, жизнь и смерть. М.: Наука, Главная редакция физико-математической литературы, 19846. http://www.astrogalaxy.ru |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |