|
Исследование планеты Марс с помощью космических аппаратовp align="left">Своё имя ровер получил в честь аболиционистки времён Гражданской войны в США Соджорнер Трус. Сам ровер напоминает детскую игрушку: он имеет 65 см в длину, 48 см в ширину и 30 см в высоту в рабочем положении. Для движения марсоход использует шесть колёс из алюминия с ободом из нержавеющей стали, каждое диаметром 13 см. Его штатная скорость - 1 см/с; побольше, чем у улитки, но поменьше, чем у черепахи. Используя солнечную батарею площадью 0,2 м2, за день ровер может иметь до 0,1 КВт·час энергии. Есть запасные литий-хлорные аккумуляторы.Начав работу 6 июля, ровер взял пробы грунта и исследовал химический состав нескольких близлежащих камней. Кроме того, с помощью цветной стереокамеры спускаемого аппарата на Землю было передано несколько тысяч снимков панорамы места посадки. 3 августа закончился расчётный месячный срок работы станции на поверхности Марса. За это время посадочным аппаратом станции MPF на землю было передано 1,2 Гбит данных, в том числе 9669 снимков деталей марсианского ландшафта. За 30 дней ровер прошёл 52 метра по поверхности Марса, выполнил 9 анализов грунта и 3 - камней и передал 384 снимка. После этого начались сбои со связью. Последний успешный приём данных от посадочного аппарата был 27 сентября в 10.23 по Гринвичу. Все попытки наладить связь были безуспешны (очевидно, произошла разрядка бортовых аккумуляторов, не имевших возможности подзарядки от солнечных батарей). Основные итоги экспедиции: всего передано на Землю 2,6 Гбит информации, более 16 тысяч фотографий с посадочного аппарата и 550 изображений с ровера. Выполнено 15 химических анализов скальных пород. Проведены многочисленные метеоисследования; химический состав марсианской почвы в районе посадки (долина Ареса) подобен её составу в местах посадки КА "Viking-1 и -2"; подтвердилось, что именно марсианская пыль, рассеянная в атмосфере, является главным поглотителем солнечной радиации; точно измерены температура, давление и скорость ветра во время пылевых бурь; химический анализ камней, проведённый ровером, показал наличие пород, богатых серой и кремнием, что говорит о вулканической активности планеты около 4,5 млрд. лет назад; сходство по округлости между земной галькой и камнями на поверхности Марса наводит на мысль, что они сформировались под действием потоков воды, некогда существовавшей на планете; марсианская пыль содержит неоднородные магнитные микрочастицы средним размером до 0,001 мм. Кроме научной, целью экспедиции MPF была демонстрация возможности обеспечения относительно дешёвых способов доставки научного оборудования и ровера-марсохода на поверхность красной планеты. Дело в том, что при посадке на Марс использовался прямой вход в атмосферу планеты. Снижение в атмосфере происходило с помощью парашюта диаметром 11 м. Посадка осуществлялась с использованием воздушных баллонов, смягчивших удар при встрече с поверхностью. Стоимость проекта MPF оценивается в 196 млн.$. Наконец, надо сказать и об американской экспедиции, проходящей в настоящее время - 2001 Mars Odyssey (МО-2001). 7 апреля 2001 года с космодрома на мысе Канаверал был выполнен пуск РН Delta 2 с американской АМС 2001 Mars Odyssey ("Одиссея к Марсу - 2001"). Задачи миссии МО-2001 таковы: глобальное картирование элементного состава поверхности Марса; определение количества водорода (лёд, вода) в тонком поверхностном слое; исследование минералогии поверхности с высоким пространственным и спектральным разрешением; изучение морфологии поверхности Марса и геологических процессов, которые её сформировали; получение данных для планирования мест посадки следующих АМС; описание радиационной обстановки вблизи Марса для оценки риска пилотируемой экспедиции. Стартовая масса КА 2001 Mars Odyssey - 725 кг. Аппарат похож по конструкции на запущенную двумя годами ранее станцию МСО, но почти на 100 кг тяжелее. Общая стоимость полёта оценивается в 300 млн. $. На борту МО-2001 установлены три научных прибора: комплекс GRS, камера THEMIS и аппаратура радиационного контроля MARIE. Комплекс GRS включает в себя гамма-спектрометр GRS, детектор нейтронов высоких энергий HEND (российского производства) и нейтронный спектрометр NS. Его основная цель - построение глобальной карты распространённости 20 основных породообразующих элементов в приповерхностном слое Марса с точностью до 10% и пространственным разрешением порядка 300 км. Прибор THEMIS предназначен для спектральной съёмки поверхности Марса в видимой и инфракрасной части спектра. Аппаратура MARIE (Mars Radiation Environment Experiment) предназначена для изучения радиационной обстановки на трассе перелёта и на орбите спутника Марса с последующим анализом возможных доз облучения и его последствий для человека.Параллельно с выполнением своей научной программы станция МО-2001 будет ретранслировать данные с американских марсоходов MER-A и MER-B (предполагаемая посадка 4 января и 25 февраля 2004 года соответственно, но об этом проекте - далее) и посадочных аппаратов других стран. Срок работы станции определён до 17 сентября 2005 года, но эти данные меняются от публикации к публикации. Так, во многих источниках работа КА в качестве ретранслятора продлевается дополнительно на один марсианский год - до 19 сентября 2007 г.В период с 26 октября 2001 г. по 11 января 2002 г. МО-2001 успешно выполнил аэродинамическое торможение и вышел на рабочую орбиту. Весь процесс занял 77 суток, в то время как MGS, например, тормозился более 16 месяцев. Научная программа стартовала в конце февраля 2002 года.3. ПЕРСПЕКТИВЫ БУДУЩЕГОа) РОССИЙСКИЙ ПРОЕКТ “ФОБОС-ГРУНТ”Со времён "Марса-96" о российских проектах исследования планет с использованием АМС фактически ничего не было слышно. Причина ясна - почти полное отсутствие финансовой поддержки отрасли со стороны государства. Тем не менее, российские учёные продолжали работать в этом направлении. В 1997 году секция Совета РАН по космосу "Планеты и малые тела Солнечной системы" выделила три важнейших направления для космических исследований: изучение Луны, малых тел Солнечной системы и Марса. В соответствии с каждым направлением были открыты НИР по трём перспективным проектам: "Луна-Глоб" - исследование внутреннего строения Луны с использованием пенетраторов; "Фобос-Грунт";"Марс-Астер" - создание марсохода.В мае 1998 г. из трёх проектов было предложено выбрать один для продолжения проработки на уровне ОКР и включения его в Федеральную космическую программу на период 2000 - 2005 гг. На заседании секции 2 июня 1998 года был выбран проект "Фобос - Грунт" ("Ф - Г").В самых общих чертах, этот проект предусматривает создание межпланетного аппарата, способного совершить перелёт к Марсу, посадку на его естественный спутник Фобос, взятие образца грунта и доставку его на Землю. Преимущество такого проекта перед остальными предложенными для обсуждения состоит в следующем:в лабораторных условиях на Земле образцы внеземного вещества могут быть изучены гораздо лучше, чем это возможно на поверхности планеты или при дистанционных исследованиях; пока такой возможности у учёных не было (кроме изучения лунного грунта);с технической точки зрения, полёт к естественным спутникам Марса проще, чем к другим малым телам Солнечной системы. С них целесообразно начинать новую линию космических исследований - экспедиций к малым телам с целью доставки на Землю образцов их веществ;ранее в проекте "Фобос" (1988 - 1989) были решены многие технические вопросы полёта к спутникам Марса и получены новые научные данные о Фобосе. Таким образом, будет обеспечена преемственность решений;в последнее время вокруг исследований Марса сложилась широкая международная кооперация, включающая космические агентства и научные организации многих стран. Проект "Ф - Г" может стать важным самостоятельным российским элементом этой кооперации.Основные задачи проекта "Ф - Г" сводятся к следующим:определить происхождение спутников Марса - Фобоса и Деймоса и их отношение к Марсу;решить, является ли Фобос захваченным астероидом или телом, имеющим "генетическую" связь с Марсом; полученные результаты могут быть использованы при исследовании спутниковых систем других планет;выяснить, каковы физические и химические характеристики спутников Марса, их внутреннее строение, особенности орбитального и собственного вращения;доставить образец реликтового (первичного) вещества на Землю.С учётом сложности экспедиции и чтобы "не терять время", предполагается проведение научных экспериментов по исследованию Фобоса, Марса и межпланетного пространства на всех участках перелёта. Сюда должны войти:исследование атмосферы и поверхности Марса;исследование околопланетной среды в окрестностях Марса и Фобоса (пылевая и газовая составляющие);исследование взаимодействия солнечного ветра с телами Солнечной системы;технические исследования (поведение новых систем в длительном полёте).Кроме того, после посадки на поверхности спутника останется долгоживущая станция с комплектом научной аппаратуры для проведения ряда исследований.В состав бортовой научной аппаратуры АМС "Ф - Г" войдут панорамная ТВ-камера, гамма-спектрометр, нейтронный детектор, сейсмометр, температурный анализатор, фотометр пылевой среды, анализатор космической пыли, генератор доплеровских измерений и ряд других. Стартовая масса всего аппарата составит около 7250 кг, масса на момент выхода на гелиоцентрическую орбиту - 2370 кг. В качестве носителя предполагается использовать РН типа "Союз" или "Днепр".Старт аппарата к Марсу планируется в декабре 2004 - июне 2005 года. Носитель выводит КА на опорную круговую орбиту ИСЗ, после чего аппарат разгоняется с использованием бортового ЖРД. Переход на начальную гелиоцентрическую орбиту осуществляется с помощью трёхимпульсного манёвра. После выработки топлива блок баков отделяется. Затем раскрываются панели солнечных батарей и включается электроракетная двигательная установка (ЭРДУ). Аппарат начнёт медленный доразгон на гелиоцентрическом участке траектории, чтобы достичь Марса, уравнять скорость со скоростью орбитального движения планеты и выйти в плоскость марсианского экватора. По первоначальным расчётам длительность перелёта к Марсу составляла порядка 800 суток (в этом случае перелётная траектория включает два активных участка). Однако оптимизация траектории не завершена, и в настоящее время считается, что перелёт может быть сокращён за счёт иной баллистической схемы до 450 - 500 суток.Незадолго перед встречей с Марсом модуль ЭРДУ, выполнив свою задачу доразгона, отделяется. В перицентре пролётной траектории бортовой ЖРД выдаёт тормозной импульс, и аппарат выходит на эллиптическую орбиту искусственного спутника Марса (ИСМ). Далее с этой орбиты аппарат переходит на так называемую круговую орбиту наблюдения, плоскость которой лежит в плоскости марсианского экватора, на 300 км выше орбиты Фобоса. В течение трёх недель с этой орбиты будут выполнены навигационные наблюдения Фобоса (уточнение параметров его орбиты и орбиты самого аппарата). Какая-то часть времени будет отдана научным наблюдениям Фобоса и Марса.Наконец, начнётся последовательное сближение с Фобосом, методика которого, в принципе, уже рассчитана и частично отработана при подлёте советской АМС "Фобос-2" к Фобосу в январе - марте 1989 г.Сближение с Фобосом включает два основных этапа:орбитальное сближение;непосредственное сближение.На первом этапе КА выходит на квазисинхронную орбиту. Находясь на ней, аппарат в относительном движении обращается вокруг Фобоса с периодом, равным периоду обращения этого спутника вокруг Марса (Фобос всегда повёрнут к планете одной стороной).Сближение и посадка на Фобос из-за малой силы гравитации на спутнике (менее 0,001 земной) представляет, по сути дела, операцию встречи и стыковки. В течение 1,5 - 2 часов аппарат в автономном режиме осуществит непосредственное сближение с Фобосом с использованием ДУ малой тяги. После выдачи последнего импульса скорость сближения КА со спутником составит около полуметра в секунду. В непосредственной близости от поверхности начнётся этап причаливания. С борта в сторону поверхности "выстреливаются" и заглубляются в грунте несколько "гарпунов", связанных с платформой аппарата гибкими тросиками. Далее КА с выключенными ДУ садится на поверхность. В момент касания срабатывают прижимные двигатели, а бортовые "лебёдки" выбирают глубину натяжения тросиков. Аппарат оказывается надёжно зафиксированным на поверхности.Через некоторое время после посадки на аппарате приводится в действие грунтозаборное устройство. Взятые образцы грунта (реголита) массой около 170 г из устройства перегружаются в спускаемый аппарат (СА), входящий в состав взлётной ракеты (ВР). СА герметично закрывается, и грунтозаборное устройство отводится в сторону, чтобы не мешать старту ракеты с платформы.Через 1 - 3 суток после посадки ВР должна стартовать с Фобоса на траекторию перелёта к Земле. После ухода от поверхности Фобоса на безопасное расстояние ВР разворачивается с помощью двигателей стабилизации на заданный угол; затем маршевый двигатель отрабатывает импульс для ухода возвращаемого аппарата на траекторию перелёта к Земле.После старта на Фобосе останется орбитально-перелётный модуль (ОПМ) с научной аппаратурой, или так называемая долгоживущая станция. Сбор и передачу на Землю научных данных станция должна будет вести не менее трёх месяцев с момента посадки на Фобос.Перелёт ракеты к Земле продлится около 280 дней. За это время она будет периодически выходить на связь с наземными станциями, сбрасывая телеметрию и принимая команды, и отрабатывать коррекции траектории двигателями малой тяги. За сутки до входа в атмосферу Земли будет проведена последняя коррекция, обеспечивающая попадание СА в заданный район на поверхности. За 15 минут до входа в атмосферу от ракеты отделится СА массой 12 кг.Возвращение СА с образцами грунта на Землю произойдёт ориентировочно в мае - июне 2008 года.б) ЕВРОПЕЙСКИЙ ПРОЕКТ MARS EXPRESSMars Express с посадочным аппаратом Beagle 2 должен быть запущен с Байконура РН "Союз - Фрегат" в период 23 мая - 2 июня 2003 года. Ориентировочно 26 декабря 2003 г. зонд Beagle 2 должен выполнить посадку с подлётной траектории в районе 11° с.ш. и 270° з.д., а станция выйдет на орбиту спутника Марса. Стартовая масса орбитального аппарата 1190 кг, сухая масса с установленными приборами - 680 кг, масса Beagle 2 - 60 кг. Приборный комплекс состоит из камеры высокого разрешения HRSC, картирующего спектрометра OMEGA, фурье-спектрометра PFS, радара MARSIS для зондирования коры планеты до глубины в несколько километров, атмосферного спектрометра SPICAM и анализатора нейтральных атомов ASPERA. С помощью бортового радиопередатчика будет выполняться эксперимент по радиозондированию MaRS. Многие из этих экспериментов перенесены на Mars Express с "Марса-96". В разработке проекта принимают участие 25 компаний из 15 стран Европы.Mars Express должен проработать на орбите по крайней мере один марсианский год (до декабря 2005 г.), но топлива несёт на двойной срок. Программа работы Beagle 2 на поверхности рассчитана на 6 месяцев, дополнительная программа - до конца первого марсианского года (669 местных или 687 земных суток). Связь с Землёй будет вестись через ретранслятор на КА Mars Express или Mars Odyssey.Одной из основных задач Beagle 2 является (впервые после пионерских экспериментов на посадочных аппаратах Viking) поиск химических признаков жизни на Марсе, прошлой или современной. Две другие - исследовать геологию, минеральный и химический состав в точке посадки, изучить погоду и климат.Роботизированный комплекс Beagle 2 - это произведение инженерного искусства, авторами которого являются германская DLR, российский "Трансмаш" и итальянская Techniospacio. В состав его входит манипулятор со стереокамерой, микроскопом, точильно-сверлильным рабочим органом и "кротом" - полуавтономным ползающим сборщиком образцов. На Марсе, где буквально все породы покрыты ржавчиной, необходимо сначала избавиться от неё, а уже потом вести измерения. Для этого предусмотрены две возможности.Первая состоит в том, что поверхность камня фрезеруется, а затем на очищенной площадке высверливается полым сверлом отверстие и забирается образец диаметром 2 мм и длиной 10 мм. Вторая заключается в использовании "крота" по имени Pluto, который выползает из своего "домика", перемещается со скоростью около 1,5 мм/с на расстояние до 3 метров и зарывается в грунт под защитой какого-нибудь камня. Обратно он возвращается за счёт сматывания кабеля на катушку, неся в своей "пасти" неокисленный образец.в) АМЕРИКАНСКИЙ ПРОЕКТ MARS EXPLORATION ROVERАмериканским вкладом в план 2003 г. является пара марсоходов MER (Mars Exploration Rover), способных проходить до 100 метров в сутки. Пуск двух станций значительно увеличивает шансы на успех и - в наиболее благоприятном случае - позволит исследовать сразу два района Марса.Если сравнить задачи и состав научной аппаратуры КА MER с полезной нагрузкой Beagle 2 - сходство просто бросается в глаза. "Американцы" также оснащаются панорамной камерой, микроскопом и спектрометром Мёссбауэра, манипулятором с пятью степенями свободы и даже шлифовальным устройством RAT для удаления ржавчины на участке диаметром 47 мм.Когда летом 2000 г. было принято решение о создании этих аппаратов, задача казалась относительно простой. Нужно повторить посадку знаменитой станции Mars Pathfinder (1996 - 1997) с другой полезной нагрузкой - марсоходом с комплексом научной аппаратуры Athena, разработка которого велась уже несколько лет. Но ровер массой 150 кг оказался великоват для разработанной ранее подсистемы обеспечения посадки. Понадобились бульшие по размеру парашюты и посадочные амортизаторы, и на их отработку ушло немало времени.Как бы там ни было, в феврале 2002 г. начался этап сборки и лётных испытаний. Старт КА планируется 30 мая и 27 июня 2003 года, прибытие на Марс - 4 января и 8 февраля 2004 года соответственно. Каждый марсоход рассчитан на 3 месяца непрерывной работы на поверхности красной планеты.Что порадовало разработчиков осенью 2001 г., так это выход на орбиту вокруг Марса станции Mars Odyssey. Марсоход MER в принципе может связываться с Землёй напрямую, но это очень медленный канал. Чтобы передать "картинку", нужен орбитальный ретран-слятор. В штатном режиме для этого используется ретранслятор на "Одиссее", и он, по-видимому, будет работоспособен. Его может заменить Mars Express, а в самом крайнем случае - Mars Global Surveyor (но к этому моменту станции исполнится уже 8 лет, и доживёт ли "Глобал Сервейор" до весны 2004 г., никто не поручится).г) ПРОЕКТЫ 2005 - 2011 ГОДОВ В нижеприведённой таблице перечислены перечень аппаратов и сроки их работы в период с 2005 по 2018 годы, согласно материалам планирования загрузки Сети дальней связи (DSN).
Сборка марсианского комплекса осуществляется автономно, без использования в качестве базы той или иной орбитальной станции. Первым на орбиту выводится жилой блок, на который транспортными кораблями доставляются сменные экипажи сборки и испытаний. В течение нескольких месяцев последовательно запускаются элементы солнечного буксира, последним доставляется марсианский посадочный аппарат. Экипажи сборки и испытаний развёртывают батареи солнечного буксира и проводят испытания комплекса, а затем прибывает экипаж марсианской экспедиции (четыре человека). Разгон с орбиты ИСЗ по спиральной траектории до отлётной скорости выполняется с помощью ЭРДУ в течение примерно трёх месяцев. В течение примерно 20 суток, когда комплекс проходит через радиационные пояса, экипаж укрывается в радиационном убежище. Для выхода на орбиту спутника Марса и отлёта к Земле также используется солнечный буксир. Для схода посадочного аппарата с орбиты, а затем для старта взлётной ракеты используются ЖРД. При подлёте к Земле с помощью солнечного буксира выполняется выход на орбиту ИСЗ, на которой экипаж проходит карантин. После этого буксир, за исключением фотоэлектрических преобразователей солнечных батарей, может быть использован повторно. Работы по осуществлению марсианской экспедиции осуществляются в три фазы. На первой, в 1999 - 2005 гг., на базе российского сегмента МКС отрабатывается использование электрореактивных ДУ (проекты "Модуль-М", "Модуль-М2" и "Марс-Модуль"). "Марс-Модуль" представляет собой масштабный прототип пилотируемого корабля. Эти прототипы должны подтвердить закладываемые в проект принципы и - дополнительно - принести научную информацию. На втором этапе, в 2010 - 2012 гг., проводится генеральная репетиция марсианской экспедиции в беспилотном варианте. Служебный (орбитальный) модуль не включается в состав комплекса - он отрабатывается в пилотируемом режиме на орбите ИСЗ. Вместо него к Марсу отправляется второй посадочный аппарат. Первый посадочный аппарат заберёт образцы марсианского грунта и вернёт их на Землю. Второй вместо взлётной ракеты будет нести полезную нагрузку, в качестве которой рассматривается комплект из десяти марсоходов массой по 1,5 - 2 тонны с большим радиусом действия. Они могли бы пройти по разным трассам и выполнить огромный объём научных исследований. На третьем этапе реализуется первая пилотируемая экспедиция, старт которой может быть осуществлён в 2015 г., а длительность составит два года. Если в её задачи не будет включено развёртывание марсианской базы, длительность работы экипажа на поверхности Марса составит от 7 до 30 суток. Если на этапе беспилотных исследований выяснится, что такая база (радиационное убежище) необходима, её оборудование может быть доставлено одновременно с марсоходами, а первая пилотируемая экспе-диция продлится дольше. Вопрос о политической и экономической осуществимости данного проекта на совещании не рассматривался. Проект Центра Джонсона, в отличие от "энергиевского", не может похвастать тридцатилетней традицией. Его разработчики молоды и по-хорошему нахальны. Они заложили в проект по крайней мере три новшества: производство топлива на Марсе из местных ресурсов, использование для выхода на орбиту аэродинамического торможения и применение надувных жилых отсеков. Плюс к этому - солнечный электрический буксир. Как и "Энергия", отдел Кука выбрал электрическую тягу вместо ядерной, хотя последняя и была более выгодной с точки зрения массы. В качестве базового носителя рассматривается РН Magnum с грузоподъёмностью порядка 80 тонн. В её состав входят центральный блок (на основе внешнего бака "шаттла") с тремя двигателями SSME и два стартовых жидкостных возвращаемых ускорителя, которые могут быть разработаны в ходе модификации транспортной системы Space Shuttle. "Изюминкой" конструкции носителя является использование донной теплозащиты запускаемых марсианских модулей в качестве составного элемента головного обтекателя РН. Используя этот щит, так называемые "санки" (ellipsled), модули могут садиться на поверхность Марса или выполнять торможение в атмосфере планеты для выхода с пролётной траектории на орбиту (аэродинамический захват). Солнечный буксир многократного использования (SEP) выводится одной РН Magnum. Буксир имеет тонкоплёночные солнечные батареи максимальным размахом 185 м, общей площадью 7100 м2 и выходной электрической мощностью 800 кВт. Буксир и остальные компоненты доставляются и собираются на низкой орбите - возможно, но не обязательно, на орбите МКС. Буксир SEP используется только для разгона с низкой околоземной орбиты до высокоэллиптической в течение 9 - 12 месяцев. Чтобы избежать длительного нахождения экипажа в радиационных поясах, экипаж подсаживается с транспортного корабля уже на высокоэллиптической орбите. Переход с высокоэллиптической орбиты на трассу перелёта к Марсу осуществляется на ДУ с ЖРД, после чего SEP возвращается "своим ходом" на низкую околоземную орбиту. Так как возвращение с Марса обеспечивается ЖРД, американская экспедиция остаётся жёстко привязанной к оптимальным астрономическим срокам. Рассматривается два варианта схемы экспедиции. Условно их можно назвать двухпусковым и однопусковым, если под пуском понимать разгон с помощью солнечного буксира. В двухпусковой схеме в первом пуске к Марсу отправляются возвращаемый жилой модуль (Return Habitat, RH) и ракетный блок для разгона с марсианской орбиты (Trans Earth Injection, TEI), которые выводятся путём аэродинамического захвата на эллиптическую орбиту с периодом 1 марсианские сутки. Одновременно комплекс в составе возвращаемого аппарата (Mars Ascent Vehicle, MAV), аппаратуры для производства компонентов топлива, аппаратуры для научных исследований и ядерного источника питания садится на поверхность с подлётной траектории. Во втором пуске идёт жилой модуль с экипажем (для радиационной защиты экипажа на этапе перелёта используется слой воды; искусственная тяжесть не предусматривается). Модуль с экипажем выходит на орбиту спутника Марса путём аэродинамического захвата, а затем спускается на поверхность. На возвращаемом аппарате экипаж выходит на орбиту и стыкуется с возвращаемым жилым модулем. Для старта к Земле используется ЖРД блока TEI. Модуль RH выходит на низкую околоземную орбиту аэродинамическим захватом, а экипаж снимается с него и доставляется на Землю "шаттлом". В рамках сценария, известного как опция Е-19(Р), два пуска планируются на 2016 и 2018 гг., причём посадка на Марс выполняется в июле 2019 г., через 50 лет после первой лунной экспедиции. Буквой Р обозначен "умеренный" (paced) темп работ. Существует также "агрессивный" сценарий Е-19(А), в котором пуски планируются на 2011 и 2013 г. В однопусковой схеме к Марсу одновременно, но по отдельности, отправляются перелётный жилой модуль TransHab (Transit Habitat) с ракетным блоком TEI и комбинированный посадочный модуль (Combo Lander) с возвращаемым аппаратом, поверхностным жилым модулем, аппаратурой для научных исследований и ядерным источником питания. Экипаж находится в модуле TransHab. Жилой модуль и посадочный модуль выходят методом аэрозахвата на орбиту спутника Марса высотой 250 км и стыкуются на ней. Спуск на Марс выполняется в посадочном модуле. Возвращаемый аппарат выходит на орбиту и стыкуется с перелётным модулем. Возвращение экипажа выполняется так же, как и при двухпусковой схеме. В зависимости от принятого сценария, длительность работы экипажа на поверхности Марса составит от 45 до 500 суток. В последнем случае общая длительность экспедиции достигнет трёх лет. Комментируя американскую схему, Л.А.Горшков подчеркнул важное сходство: команда Центра Джонсона также пришла к необходимости использования электрореактивных двигателей. В то же время, сказал он, с многокорабельной схемой и в особенности изготовлением топлива на Марсе пока согласиться нельзя. Производство топлива из местных ресурсов - очень интересная и хорошая технология на будущее, но класть её в основу первой пилотируемой экспедиции слишком рискованно, считает Леонид Алексеевич. Стоит отметить, что в обоих проектах безопасность экипажа была объявлена первым приоритетом, а выполнение задачи - вторым. Но возникают и некоторые сомнения к правильности такого подхода, ведь участники полёта на Марс рискуют во имя будущего человечества, и добровольцы обязательно найдутся. СПИСОК ЛИТЕРАТУРЫ Большая Советская Энциклопедия. 3-е изд. Том 15. М., "Советская Энциклопедия", 1974. Бронштэн В.А. Новая загадка Марса/ В сб. "Познание продолжается", М., "Просвещение", 1970. Леонов А.А. На космических трассах/ В сб. "Наука и человечество. 1965", М., "Знание", 1965. Мороз В.И. Космические аппараты исследуют Марс: советская экспедиция 1973 - 1974 гг./ В сб. "Наука и человечество. 1976", М., "Знание", 1975. Зигель Ф.Ю. Сокровища звёздного неба: Путеводитель по созвездиям и Луне. М., "Наука", 1987. Морозов К.В. Ракеты-носители космических аппаратов. М., "Машиностроение", 1975. Кондрашов А.П. Справочник необходимых знаний. М., "РИПОЛ КЛАССИК", 2001. Зайцев Ю. Миссия "Фобос"/ В сб. "Космонавтика, астрономия", №№ 10 - 12, 1989. Карпенко С. Наша межпланетная станция (Проект российской АМС "Фобос - Грунт")/ Журнал "Новости космонавтики", № 3, 2000. Лисов И. "Mars Pathfinder" исследует Марс/ Журнал "Новости космонавтики", № 14, 1997. Лисов И. В 2019 г. человек высадится на Марс?/ Журнал "Новости космонавтики", № 19/20, 1998. Лисов И. До и после "Одиссея"/ Журнал "Новости космонавтики", №№ 6 - 7, 2001, №№ 2 - 3, 2002. Глазков Ю.Н. Готово ли человечество к полёту на Марс?/ В сб. "Гипотезы. Прогнозы". Вып.23. М., "Знание", 1990. Страницы: 1, 2 |
|
||||||||||||||||||||||||||||||||||||||||
|
Рефераты бесплатно, реферат бесплатно, сочинения, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |